Files
2025-08-12 22:16:57 +02:00

2363 lines
58 KiB
C
Executable File

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013, 2016-2018, 2020-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/bug.h>
#include <linux/export.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/rational.h>
#include <linux/regmap.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/slab.h>
#include <asm/div64.h>
#include <soc/qcom/crm.h>
#include <soc/qcom/tcs.h>
#include "clk-rcg.h"
#include "common.h"
#include "clk-debug.h"
#define CMD_REG 0x0
#define CMD_UPDATE BIT(0)
#define CMD_ROOT_EN BIT(1)
#define CMD_DIRTY_CFG BIT(4)
#define CMD_DIRTY_N BIT(5)
#define CMD_DIRTY_M BIT(6)
#define CMD_DIRTY_D BIT(7)
#define CMD_ROOT_OFF BIT(31)
#define CFG_REG 0x4
#define CFG_SRC_DIV_SHIFT 0
#define CFG_SRC_SEL_SHIFT 8
#define CFG_SRC_SEL_MASK (0x7 << CFG_SRC_SEL_SHIFT)
#define CFG_MODE_SHIFT 12
#define CFG_MODE_MASK (0x3 << CFG_MODE_SHIFT)
#define CFG_MODE_DUAL_EDGE (0x2 << CFG_MODE_SHIFT)
#define CFG_HW_CLK_CTRL_MASK BIT(20)
#define M_REG 0x8
#define N_REG 0xc
#define D_REG 0x10
#define RCG_CFG_OFFSET(rcg) ((rcg)->cmd_rcgr + (rcg)->cfg_off + CFG_REG)
#define RCG_M_OFFSET(rcg) ((rcg)->cmd_rcgr + (rcg)->cfg_off + M_REG)
#define RCG_N_OFFSET(rcg) ((rcg)->cmd_rcgr + (rcg)->cfg_off + N_REG)
#define RCG_D_OFFSET(rcg) ((rcg)->cmd_rcgr + (rcg)->cfg_off + D_REG)
/* Dynamic Frequency Scaling */
#define MAX_PERF_LEVEL 8
#define SE_CMD_DFSR_OFFSET 0x14
#define SE_CMD_DFS_EN BIT(0)
#define SE_PERF_DFSR(level) (0x1c + 0x4 * (level))
#define SE_PERF_M_DFSR(level) (0x5c + 0x4 * (level))
#define SE_PERF_N_DFSR(level) (0x9c + 0x4 * (level))
/* Cesta configuration*/
#define MAX_VCD_PER_CRM 9
#define MAX_PERF_OL_PER_VCD 4
#define MAX_CRM_SW_DRV_STATE 3
#define CRMC_OFFS_VCD(crm, _vcd) \
((crm)->offsets.vcd * (_vcd))
#define CRMC_OFFS_LUT(crm, vcd, _level) \
(CRMC_OFFS_VCD(crm, vcd) + ((crm)->offsets.level * (_level)))
#define CRMC_OFFS_CURR_PERF(crm, vcd) \
(CRMC_OFFS_VCD(crm, vcd) + (crm)->regs.curr_perf)
#define CRMC_OFFS_CFG_RCGR(crm, vcd, level) \
(CRMC_OFFS_LUT(crm, vcd, level) + (crm)->regs.cfg_rcgr)
#define CRMC_OFFS_L_VAL(crm, vcd, level) \
(CRMC_OFFS_LUT(crm, vcd, level) + (crm)->regs.l_val)
#define PLL_L_VAL_MASK GENMASK(7, 0)
#define PLL_ALPHA_VAL_MASK GENMASK(31, 16)
#define PLL_ALPHA_VAL_SHIFT 16
enum freq_policy {
FLOOR,
CEIL,
};
static struct freq_tbl cxo_f = {
.freq = 19200000,
.src = 0,
.pre_div = 1,
.m = 0,
.n = 0,
};
static int clk_rcg2_is_enabled(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 cmd;
int ret;
ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, &cmd);
if (ret)
return ret;
return (cmd & CMD_ROOT_OFF) == 0;
}
static u8 __clk_rcg2_get_parent(struct clk_hw *hw, u32 cfg)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int num_parents = clk_hw_get_num_parents(hw);
int i;
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++)
if (cfg == rcg->parent_map[i].cfg)
return i;
pr_debug("%s: Clock %s has invalid parent, using default.\n",
__func__, clk_hw_get_name(hw));
return 0;
}
static u8 clk_rcg2_get_parent(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 cfg;
int ret;
ret = regmap_read(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), &cfg);
if (ret) {
pr_debug("%s: Unable to read CFG register for %s\n",
__func__, clk_hw_get_name(hw));
return 0;
}
return __clk_rcg2_get_parent(hw, cfg);
}
static int get_update_timeout(const struct clk_rcg2 *rcg)
{
int timeout = 0;
/*
* The time it takes an RCG to update is roughly 3 clock cycles of the
* old and new clock rates.
*/
if (rcg->current_freq)
timeout += 3 * (1000000 / rcg->current_freq);
if (rcg->configured_freq)
timeout += 3 * (1000000 / rcg->configured_freq);
return max(timeout, 500);
}
static int update_config(struct clk_rcg2 *rcg)
{
int timeout, count, ret;
u32 cmd;
struct clk_hw *hw = &rcg->clkr.hw;
ret = regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG,
CMD_UPDATE, CMD_UPDATE);
if (ret)
return ret;
timeout = get_update_timeout(rcg);
/* Wait for update to take effect */
for (count = timeout; count > 0; count--) {
ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, &cmd);
if (ret)
return ret;
if (!(cmd & CMD_UPDATE))
return 0;
udelay(1);
}
WARN_CLK(hw, 1, "rcg didn't update its configuration after %d us.", timeout);
return -EBUSY;
}
static int clk_rcg2_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int ret;
u32 cfg = rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT;
ret = regmap_update_bits(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg),
CFG_SRC_SEL_MASK, cfg);
if (ret)
return ret;
return update_config(rcg);
}
static int clk_rcg2_set_force_enable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int ret = 0, count = 500;
ret = regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG,
CMD_ROOT_EN, CMD_ROOT_EN);
if (ret)
return ret;
for (; count > 0; count--) {
if (clk_rcg2_is_enabled(hw))
return ret;
/* Delay for 1usec and retry polling the status bit */
udelay(1);
}
WARN_CLK(hw, 1, "rcg didn't turn on.");
return ret;
}
static int clk_rcg2_clear_force_enable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
return regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG,
CMD_ROOT_EN, 0);
}
static bool clk_rcg2_is_force_enabled(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 val = 0;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, &val);
return val & CMD_ROOT_EN;
}
static int prepare_enable_rcg_srcs(struct clk *curr, struct clk *new)
{
int rc = 0;
rc = clk_prepare(curr);
if (rc)
return rc;
rc = clk_prepare(new);
if (rc)
goto err_new_src_prepare;
rc = clk_enable(curr);
if (rc)
goto err_curr_src_enable;
rc = clk_enable(new);
if (rc)
goto err_new_src_enable;
return rc;
err_new_src_enable:
clk_disable(curr);
err_curr_src_enable:
clk_unprepare(new);
err_new_src_prepare:
clk_unprepare(curr);
return rc;
}
static void disable_unprepare_rcg_srcs(struct clk *curr, struct clk *new)
{
clk_disable(new);
clk_disable(curr);
clk_unprepare(new);
clk_unprepare(curr);
}
/*
* Calculate m/n:d rate
*
* parent_rate m
* rate = ----------- x ---
* hid_div n
*/
static unsigned long
calc_rate(unsigned long rate, u32 m, u32 n, u32 mode, u32 hid_div)
{
if (hid_div)
rate = mult_frac(rate, 2, hid_div + 1);
if (mode)
rate = mult_frac(rate, m, n);
return rate;
}
static unsigned long
__clk_rcg2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate, u32 cfg)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f_curr;
u32 src, hid_div, m = 0, n = 0, mode = 0, mask;
unsigned long rrate = 0;
src = cfg;
src &= CFG_SRC_SEL_MASK;
src >>= CFG_SRC_SEL_SHIFT;
if (rcg->enable_safe_config && (!clk_hw_is_prepared(hw)
|| !clk_hw_is_enabled(hw)) && !src) {
if (!rcg->current_freq)
rcg->current_freq = cxo_f.freq;
if (!(clk_hw_get_flags(hw) & CLK_GET_RATE_NOCACHE))
return rcg->current_freq;
}
if (rcg->mnd_width) {
mask = BIT(rcg->mnd_width) - 1;
regmap_read(rcg->clkr.regmap, RCG_M_OFFSET(rcg), &m);
m &= mask;
regmap_read(rcg->clkr.regmap, RCG_N_OFFSET(rcg), &n);
n = ~n;
n &= mask;
n += m;
mode = cfg & CFG_MODE_MASK;
mode >>= CFG_MODE_SHIFT;
}
if (rcg->enable_safe_config && !src) {
f_curr = qcom_find_freq(rcg->freq_tbl, rcg->current_freq);
if (!f_curr)
return -EINVAL;
hid_div = f_curr->pre_div;
} else {
mask = BIT(rcg->hid_width) - 1;
hid_div = cfg >> CFG_SRC_DIV_SHIFT;
hid_div &= mask;
}
rrate = calc_rate(parent_rate, m, n, mode, hid_div);
/*
* Check to cover the case when the RCG has been initialized to a
* non-CXO frequency before the clock driver has taken control of it.
*/
if (rcg->enable_safe_config && !rcg->current_freq)
rcg->current_freq = rrate;
return rrate;
}
static unsigned long
clk_rcg2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 cfg;
regmap_read(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), &cfg);
return __clk_rcg2_recalc_rate(hw, parent_rate, cfg);
}
static int _freq_tbl_determine_rate(struct clk_hw *hw, const struct freq_tbl *f,
struct clk_rate_request *req,
enum freq_policy policy)
{
unsigned long clk_flags, rate = req->rate;
struct clk_rate_request parent_req = { };
struct clk_hw *p;
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int index, ret = 0;
switch (policy) {
case FLOOR:
f = qcom_find_freq_floor(f, rate);
break;
case CEIL:
f = qcom_find_freq(f, rate);
break;
default:
return -EINVAL;
}
if (!f)
return -EINVAL;
index = qcom_find_src_index(hw, rcg->parent_map, f->src);
if (index < 0)
return index;
clk_flags = clk_hw_get_flags(hw);
p = clk_hw_get_parent_by_index(hw, index);
if (!p)
return -EINVAL;
if (clk_flags & CLK_SET_RATE_PARENT) {
rate = f->freq;
if (f->pre_div) {
if (!rate)
rate = req->rate;
rate /= 2;
rate *= f->pre_div + 1;
}
if (f->n) {
u64 tmp = rate;
tmp = tmp * f->n;
do_div(tmp, f->m);
rate = tmp;
}
} else {
rate = clk_hw_get_rate(p);
}
req->best_parent_hw = p;
req->best_parent_rate = clk_hw_round_rate(p, rate);
req->rate = f->freq;
if (f->src_freq != FIXED_FREQ_SRC) {
rate = parent_req.rate = f->src_freq;
parent_req.best_parent_hw = p;
ret = __clk_determine_rate(p, &parent_req);
if (ret)
return ret;
ret = clk_set_rate(p->clk, parent_req.rate);
if (ret) {
pr_err("Failed set rate(%lu) on parent for non-fixed source\n",
parent_req.rate);
return ret;
}
}
return 0;
}
static int clk_rcg2_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
return _freq_tbl_determine_rate(hw, rcg->freq_tbl, req, CEIL);
}
static int clk_rcg2_determine_floor_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
return _freq_tbl_determine_rate(hw, rcg->freq_tbl, req, FLOOR);
}
static int __clk_rcg2_configure(struct clk_rcg2 *rcg, const struct freq_tbl *f,
u32 *_cfg)
{
u32 cfg, mask, d_val, not2d_val, n_minus_m;
struct clk_hw *hw = &rcg->clkr.hw;
int ret, index = qcom_find_src_index(hw, rcg->parent_map, f->src);
if (index < 0)
return index;
if (rcg->mnd_width && f->n) {
mask = BIT(rcg->mnd_width) - 1;
ret = regmap_update_bits(rcg->clkr.regmap,
RCG_M_OFFSET(rcg), mask, f->m);
if (ret)
return ret;
ret = regmap_update_bits(rcg->clkr.regmap,
RCG_N_OFFSET(rcg), mask, ~(f->n - f->m));
if (ret)
return ret;
/* Calculate 2d value */
d_val = f->n;
n_minus_m = f->n - f->m;
n_minus_m *= 2;
d_val = clamp_t(u32, d_val, f->m, n_minus_m);
not2d_val = ~d_val & mask;
ret = regmap_update_bits(rcg->clkr.regmap,
RCG_D_OFFSET(rcg), mask, not2d_val);
if (ret)
return ret;
}
mask = BIT(rcg->hid_width) - 1;
mask |= CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK;
cfg = f->pre_div << CFG_SRC_DIV_SHIFT;
cfg |= rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT;
if (rcg->mnd_width && f->n && (f->m != f->n))
cfg |= CFG_MODE_DUAL_EDGE;
if (rcg->hw_clk_ctrl || rcg->flags & HW_CLK_CTRL_MODE)
cfg |= CFG_HW_CLK_CTRL_MASK;
*_cfg &= ~mask;
*_cfg |= cfg;
return 0;
}
static int clk_rcg2_configure(struct clk_rcg2 *rcg, const struct freq_tbl *f)
{
u32 cfg;
int ret;
ret = regmap_read(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), &cfg);
if (ret)
return ret;
ret = __clk_rcg2_configure(rcg, f, &cfg);
if (ret)
return ret;
ret = regmap_write(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), cfg);
if (ret)
return ret;
rcg->configured_freq = f->freq;
return update_config(rcg);
}
static void clk_rcg2_list_registers(struct seq_file *f, struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
static struct clk_register_data *data;
int i, val;
static struct clk_register_data data1[] = {
{"CMD_RCGR", 0x0},
{"CFG_RCGR", 0x4},
{ },
};
static struct clk_register_data data2[] = {
{"CMD_RCGR", 0x0},
{"CFG_RCGR", 0x4},
{"M_VAL", 0x8},
{"N_VAL", 0xC},
{"D_VAL", 0x10},
{ },
};
static struct clk_register_data data3[] = {
{"CMD_RCGR", 0x0},
{"CFG_RCGR", 0x4},
{"M_VAL", 0x8},
{"N_VAL", 0xC},
{"D_VAL", 0x10},
{"CMD_DFSR", 0x14},
{ },
};
if (rcg->flags & DFS_SUPPORT)
data = data3;
else if (rcg->mnd_width)
data = data2;
else
data = data1;
for (i = 0; data[i].name != NULL; i++) {
regmap_read(rcg->clkr.regmap, (rcg->cmd_rcgr +
data[i].offset), &val);
clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
}
}
/* Return the nth supported frequency for a given clock. */
static long clk_rcg2_list_rate(struct clk_hw *hw, unsigned int n,
unsigned long fmax)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f = rcg->freq_tbl;
size_t freq_tbl_size = 0;
if (!f)
return -ENXIO;
for (; f->freq; f++)
freq_tbl_size++;
if (n > freq_tbl_size - 1)
return -EINVAL;
return (rcg->freq_tbl + n)->freq;
}
static int __clk_rcg2_set_rate(struct clk_hw *hw, unsigned long rate,
enum freq_policy policy)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f, *f_curr;
int ret, curr_src_index, new_src_index;
struct clk_hw *curr_src = NULL, *new_src = NULL;
bool force_enabled = false;
switch (policy) {
case FLOOR:
f = qcom_find_freq_floor(rcg->freq_tbl, rate);
break;
case CEIL:
f = qcom_find_freq(rcg->freq_tbl, rate);
break;
default:
return -EINVAL;
}
if (!f)
return -EINVAL;
/*
* Return if the RCG is currently disabled. This configuration update
* will happen as part of the RCG enable sequence.
*/
if (rcg->enable_safe_config && !clk_hw_is_prepared(hw)) {
rcg->current_freq = rate;
return 0;
}
if (rcg->flags & FORCE_ENABLE_RCG) {
rcg->current_freq = DIV_ROUND_CLOSEST_ULL(
clk_get_rate(hw->clk), 1000) * 1000;
if (rcg->current_freq == cxo_f.freq)
curr_src_index = 0;
else {
f_curr = qcom_find_freq(rcg->freq_tbl,
rcg->current_freq);
if (!f_curr)
return -EINVAL;
curr_src_index = qcom_find_src_index(hw,
rcg->parent_map, f_curr->src);
}
new_src_index = qcom_find_src_index(hw, rcg->parent_map,
f->src);
curr_src = clk_hw_get_parent_by_index(hw, curr_src_index);
if (!curr_src)
return -EINVAL;
new_src = clk_hw_get_parent_by_index(hw, new_src_index);
if (!new_src)
return -EINVAL;
/* The RCG could currently be disabled. Enable its parents. */
ret = prepare_enable_rcg_srcs(curr_src->clk, new_src->clk);
if (ret)
return ret;
force_enabled = clk_rcg2_is_force_enabled(hw);
if (!force_enabled)
clk_rcg2_set_force_enable(hw);
}
ret = clk_rcg2_configure(rcg, f);
if (ret)
return ret;
if (rcg->flags & FORCE_ENABLE_RCG) {
if (!force_enabled)
clk_rcg2_clear_force_enable(hw);
disable_unprepare_rcg_srcs(curr_src->clk, new_src->clk);
}
/* Update current frequency with the requested frequency. */
rcg->current_freq = rate;
return ret;
}
static int clk_rcg2_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
return __clk_rcg2_set_rate(hw, rate, CEIL);
}
static int clk_rcg2_set_floor_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
return __clk_rcg2_set_rate(hw, rate, FLOOR);
}
static int clk_rcg2_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
return __clk_rcg2_set_rate(hw, rate, CEIL);
}
static int clk_rcg2_set_floor_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
return __clk_rcg2_set_rate(hw, rate, FLOOR);
}
static int clk_rcg2_get_duty_cycle(struct clk_hw *hw, struct clk_duty *duty)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 notn_m, n, m, d, not2d, mask;
if (!rcg->mnd_width) {
/* 50 % duty-cycle for Non-MND RCGs */
duty->num = 1;
duty->den = 2;
return 0;
}
regmap_read(rcg->clkr.regmap, RCG_D_OFFSET(rcg), &not2d);
regmap_read(rcg->clkr.regmap, RCG_M_OFFSET(rcg), &m);
regmap_read(rcg->clkr.regmap, RCG_N_OFFSET(rcg), &notn_m);
if (!not2d && !m && !notn_m) {
/* 50 % duty-cycle always */
duty->num = 1;
duty->den = 2;
return 0;
}
mask = BIT(rcg->mnd_width) - 1;
d = ~(not2d) & mask;
d = DIV_ROUND_CLOSEST(d, 2);
n = (~(notn_m) + m) & mask;
duty->num = d;
duty->den = n;
return 0;
}
static int clk_rcg2_set_duty_cycle(struct clk_hw *hw, struct clk_duty *duty)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 notn_m, n, m, d, not2d, mask, duty_per, cfg;
int ret;
/* Duty-cycle cannot be modified for non-MND RCGs */
if (!rcg->mnd_width)
return -EINVAL;
mask = BIT(rcg->mnd_width) - 1;
regmap_read(rcg->clkr.regmap, RCG_N_OFFSET(rcg), &notn_m);
regmap_read(rcg->clkr.regmap, RCG_M_OFFSET(rcg), &m);
regmap_read(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), &cfg);
/* Duty-cycle cannot be modified if MND divider is in bypass mode. */
if (!(cfg & CFG_MODE_MASK))
return -EINVAL;
n = (~(notn_m) + m) & mask;
duty_per = (duty->num * 100) / duty->den;
/* Calculate 2d value */
d = DIV_ROUND_CLOSEST(n * duty_per * 2, 100);
/*
* Check bit widths of 2d. If D is too big reduce duty cycle.
* Also make sure it is never zero.
*/
d = clamp_val(d, 1, mask);
if ((d / 2) > (n - m))
d = (n - m) * 2;
else if ((d / 2) < (m / 2))
d = m;
not2d = ~d & mask;
ret = regmap_update_bits(rcg->clkr.regmap, RCG_D_OFFSET(rcg), mask,
not2d);
if (ret)
return ret;
return update_config(rcg);
}
static int clk_rcg2_enable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
unsigned long rate;
const struct freq_tbl *f;
int ret;
if (rcg->flags & FORCE_ENABLE_RCG)
clk_rcg2_set_force_enable(hw);
if (!rcg->enable_safe_config)
return 0;
/*
* Switch from CXO to the stashed mux selection. Force enable and
* disable the RCG while configuring it to safeguard against any update
* signal coming from the downstream clock. The current parent has
* already been prepared and enabled at this point, and the CXO source
* is always on while APPS is online. Therefore, the RCG can safely be
* switched.
*/
rate = rcg->current_freq;
f = qcom_find_freq(rcg->freq_tbl, rate);
if (!f)
return -EINVAL;
/*
* If CXO is not listed as a supported frequency in the frequency
* table, the above API would return the lowest supported frequency
* instead. This will lead to incorrect configuration of the RCG.
* Check if the RCG rate is CXO and configure it accordingly.
*/
if (rate == cxo_f.freq)
f = &cxo_f;
if (!(rcg->flags & FORCE_ENABLE_RCG))
clk_rcg2_set_force_enable(hw);
ret = clk_rcg2_configure(rcg, f);
if (!(rcg->flags & FORCE_ENABLE_RCG))
clk_rcg2_clear_force_enable(hw);
return ret;
}
static void clk_rcg2_disable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int ret;
if (!rcg->enable_safe_config) {
if (rcg->flags & FORCE_ENABLE_RCG)
clk_rcg2_clear_force_enable(hw);
return;
}
/*
* Park the RCG at a safe configuration - sourced off the CXO. This is
* needed for 2 reasons: In the case of RCGs sourcing PSCBCs, due to a
* default HW behavior, the RCG will turn on when its corresponding
* GDSC is enabled. We might also have cases when the RCG might be left
* enabled without the overlying SW knowing about it. This results from
* hard to track cases of downstream clocks being left enabled. In both
* these cases, scaling the RCG will fail since it's enabled but with
* its sources cut off.
*
* Save mux select and switch to CXO. Force enable and disable the RCG
* while configuring it to safeguard against any update signal coming
* from the downstream clock. The current parent is still prepared and
* enabled at this point, and the CXO source is always on while APPS is
* online. Therefore, the RCG can safely be switched.
*/
clk_rcg2_set_force_enable(hw);
ret = clk_rcg2_configure(rcg, &cxo_f);
if (ret)
pr_err("%s: CXO configuration failed\n", clk_hw_get_name(hw));
clk_rcg2_clear_force_enable(hw);
}
static struct clk_regmap_ops clk_rcg2_regmap_ops = {
.list_rate = clk_rcg2_list_rate,
.list_registers = clk_rcg2_list_registers,
};
static int clk_rcg2_init(struct clk_hw *hw)
{
struct clk_regmap *rclk = to_clk_regmap(hw);
if (!rclk->ops)
rclk->ops = &clk_rcg2_regmap_ops;
return 0;
}
const struct clk_ops clk_rcg2_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.enable = clk_rcg2_enable,
.disable = clk_rcg2_disable,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.determine_rate = clk_rcg2_determine_rate,
.set_rate = clk_rcg2_set_rate,
.set_rate_and_parent = clk_rcg2_set_rate_and_parent,
.get_duty_cycle = clk_rcg2_get_duty_cycle,
.set_duty_cycle = clk_rcg2_set_duty_cycle,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_rcg2_ops);
const struct clk_ops clk_rcg2_floor_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.enable = clk_rcg2_enable,
.disable = clk_rcg2_disable,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.determine_rate = clk_rcg2_determine_floor_rate,
.set_rate = clk_rcg2_set_floor_rate,
.set_rate_and_parent = clk_rcg2_set_floor_rate_and_parent,
.get_duty_cycle = clk_rcg2_get_duty_cycle,
.set_duty_cycle = clk_rcg2_set_duty_cycle,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_rcg2_floor_ops);
const struct clk_ops clk_rcg2_mux_closest_ops = {
.determine_rate = __clk_mux_determine_rate_closest,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
};
EXPORT_SYMBOL_GPL(clk_rcg2_mux_closest_ops);
struct frac_entry {
int num;
int den;
};
static const struct frac_entry frac_table_675m[] = { /* link rate of 270M */
{ 52, 295 }, /* 119 M */
{ 11, 57 }, /* 130.25 M */
{ 63, 307 }, /* 138.50 M */
{ 11, 50 }, /* 148.50 M */
{ 47, 206 }, /* 154 M */
{ 31, 100 }, /* 205.25 M */
{ 107, 269 }, /* 268.50 M */
{ },
};
static struct frac_entry frac_table_810m[] = { /* Link rate of 162M */
{ 31, 211 }, /* 119 M */
{ 32, 199 }, /* 130.25 M */
{ 63, 307 }, /* 138.50 M */
{ 11, 60 }, /* 148.50 M */
{ 50, 263 }, /* 154 M */
{ 31, 120 }, /* 205.25 M */
{ 119, 359 }, /* 268.50 M */
{ },
};
static int clk_edp_pixel_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = *rcg->freq_tbl;
const struct frac_entry *frac;
int delta = 100000;
s64 src_rate = parent_rate;
s64 request;
u32 mask = BIT(rcg->hid_width) - 1;
u32 hid_div;
if (src_rate == 810000000)
frac = frac_table_810m;
else
frac = frac_table_675m;
for (; frac->num; frac++) {
request = rate;
request *= frac->den;
request = div_s64(request, frac->num);
if ((src_rate < (request - delta)) ||
(src_rate > (request + delta)))
continue;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG,
&hid_div);
f.pre_div = hid_div;
f.pre_div >>= CFG_SRC_DIV_SHIFT;
f.pre_div &= mask;
f.m = frac->num;
f.n = frac->den;
return clk_rcg2_configure(rcg, &f);
}
return -EINVAL;
}
static int clk_edp_pixel_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
/* Parent index is set statically in frequency table */
return clk_edp_pixel_set_rate(hw, rate, parent_rate);
}
static int clk_edp_pixel_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f = rcg->freq_tbl;
const struct frac_entry *frac;
int delta = 100000;
s64 request;
u32 mask = BIT(rcg->hid_width) - 1;
u32 hid_div;
int index = qcom_find_src_index(hw, rcg->parent_map, f->src);
/* Force the correct parent */
req->best_parent_hw = clk_hw_get_parent_by_index(hw, index);
if (!req->best_parent_hw)
return -EINVAL;
req->best_parent_rate = clk_hw_get_rate(req->best_parent_hw);
if (req->best_parent_rate == 810000000)
frac = frac_table_810m;
else
frac = frac_table_675m;
for (; frac->num; frac++) {
request = req->rate;
request *= frac->den;
request = div_s64(request, frac->num);
if ((req->best_parent_rate < (request - delta)) ||
(req->best_parent_rate > (request + delta)))
continue;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG,
&hid_div);
hid_div >>= CFG_SRC_DIV_SHIFT;
hid_div &= mask;
req->rate = calc_rate(req->best_parent_rate,
frac->num, frac->den,
!!frac->den, hid_div);
return 0;
}
return -EINVAL;
}
const struct clk_ops clk_edp_pixel_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_edp_pixel_set_rate,
.set_rate_and_parent = clk_edp_pixel_set_rate_and_parent,
.determine_rate = clk_edp_pixel_determine_rate,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_edp_pixel_ops);
static int clk_byte_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f = rcg->freq_tbl;
int index = qcom_find_src_index(hw, rcg->parent_map, f->src);
unsigned long parent_rate, div;
u32 mask = BIT(rcg->hid_width) - 1;
struct clk_hw *p;
if (req->rate == 0)
return -EINVAL;
req->best_parent_hw = p = clk_hw_get_parent_by_index(hw, index);
if (!p)
return -EINVAL;
req->best_parent_rate = parent_rate = clk_hw_round_rate(p, req->rate);
div = DIV_ROUND_UP((2 * parent_rate), req->rate) - 1;
div = min_t(u32, div, mask);
req->rate = calc_rate(parent_rate, 0, 0, 0, div);
return 0;
}
static int clk_byte_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = *rcg->freq_tbl;
unsigned long div;
u32 mask = BIT(rcg->hid_width) - 1;
div = DIV_ROUND_UP((2 * parent_rate), rate) - 1;
div = min_t(u32, div, mask);
f.pre_div = div;
return clk_rcg2_configure(rcg, &f);
}
static int clk_byte_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
/* Parent index is set statically in frequency table */
return clk_byte_set_rate(hw, rate, parent_rate);
}
const struct clk_ops clk_byte_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_byte_set_rate,
.set_rate_and_parent = clk_byte_set_rate_and_parent,
.determine_rate = clk_byte_determine_rate,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_byte_ops);
static int clk_byte2_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
unsigned long parent_rate, div;
u32 mask = BIT(rcg->hid_width) - 1;
struct clk_hw *p;
unsigned long rate = req->rate;
p = req->best_parent_hw;
if (!p || rate == 0)
return -EINVAL;
req->best_parent_rate = parent_rate = clk_hw_round_rate(p, rate);
div = DIV_ROUND_UP((2 * parent_rate), rate) - 1;
div = min_t(u32, div, mask);
req->rate = calc_rate(parent_rate, 0, 0, 0, div);
return 0;
}
static int clk_byte2_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = { 0 };
unsigned long div;
int i, num_parents = clk_hw_get_num_parents(hw);
u32 mask = BIT(rcg->hid_width) - 1;
u32 cfg;
div = DIV_ROUND_UP((2 * parent_rate), rate) - 1;
div = min_t(u32, div, mask);
f.pre_div = div;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++) {
if (cfg == rcg->parent_map[i].cfg) {
f.src = rcg->parent_map[i].src;
return clk_rcg2_configure(rcg, &f);
}
}
return -EINVAL;
}
static int clk_byte2_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
/* Read the hardware to determine parent during set_rate */
return clk_byte2_set_rate(hw, rate, parent_rate);
}
const struct clk_ops clk_byte2_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_byte2_set_rate,
.set_rate_and_parent = clk_byte2_set_rate_and_parent,
.determine_rate = clk_byte2_determine_rate,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_byte2_ops);
static const struct frac_entry frac_table_pixel[] = {
{ 3, 8 },
{ 2, 9 },
{ 4, 9 },
{ 1, 1 },
{ 2, 3 },
{ }
};
static int clk_pixel_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
unsigned long request, src_rate;
int delta = 100000;
const struct frac_entry *frac = frac_table_pixel;
if (!req->best_parent_hw)
return -EINVAL;
for (; frac->num; frac++) {
request = (req->rate * frac->den) / frac->num;
src_rate = clk_hw_round_rate(req->best_parent_hw, request);
if ((src_rate < (request - delta)) ||
(src_rate > (request + delta)))
continue;
req->best_parent_rate = src_rate;
req->rate = (src_rate * frac->num) / frac->den;
return 0;
}
return -EINVAL;
}
static int clk_pixel_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = { 0 };
const struct frac_entry *frac = frac_table_pixel;
unsigned long request;
int delta = 100000;
u32 mask = BIT(rcg->hid_width) - 1;
u32 hid_div, cfg;
int i, num_parents = clk_hw_get_num_parents(hw);
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++)
if (cfg == rcg->parent_map[i].cfg) {
f.src = rcg->parent_map[i].src;
break;
}
for (; frac->num; frac++) {
request = (rate * frac->den) / frac->num;
if ((parent_rate < (request - delta)) ||
(parent_rate > (request + delta)))
continue;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG,
&hid_div);
f.pre_div = hid_div;
f.pre_div >>= CFG_SRC_DIV_SHIFT;
f.pre_div &= mask;
f.m = frac->num;
f.n = frac->den;
return clk_rcg2_configure(rcg, &f);
}
return -EINVAL;
}
static int clk_pixel_set_rate_and_parent(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate, u8 index)
{
return clk_pixel_set_rate(hw, rate, parent_rate);
}
const struct clk_ops clk_pixel_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_pixel_set_rate,
.set_rate_and_parent = clk_pixel_set_rate_and_parent,
.determine_rate = clk_pixel_determine_rate,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_pixel_ops);
static int clk_gfx3d_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rate_request parent_req = { .min_rate = 0, .max_rate = ULONG_MAX };
struct clk_rcg2_gfx3d *cgfx = to_clk_rcg2_gfx3d(hw);
struct clk_hw *xo, *p0, *p1, *p2;
unsigned long p0_rate;
u8 mux_div = cgfx->div;
int ret;
p0 = cgfx->hws[0];
p1 = cgfx->hws[1];
p2 = cgfx->hws[2];
/*
* This function does ping-pong the RCG between PLLs: if we don't
* have at least one fixed PLL and two variable ones,
* then it's not going to work correctly.
*/
if (WARN_ON(!p0 || !p1 || !p2))
return -EINVAL;
xo = clk_hw_get_parent_by_index(hw, 0);
if (!xo)
return -EINVAL;
if (req->rate == clk_hw_get_rate(xo)) {
req->best_parent_hw = xo;
return 0;
}
if (mux_div == 0)
mux_div = 1;
parent_req.rate = req->rate * mux_div;
/* This has to be a fixed rate PLL */
p0_rate = clk_hw_get_rate(p0);
if (parent_req.rate == p0_rate) {
req->rate = req->best_parent_rate = p0_rate;
req->best_parent_hw = p0;
return 0;
}
if (req->best_parent_hw == p0) {
/* Are we going back to a previously used rate? */
if (clk_hw_get_rate(p2) == parent_req.rate)
req->best_parent_hw = p2;
else
req->best_parent_hw = p1;
} else if (req->best_parent_hw == p2) {
req->best_parent_hw = p1;
} else {
req->best_parent_hw = p2;
}
clk_hw_get_rate_range(req->best_parent_hw,
&parent_req.min_rate, &parent_req.max_rate);
if (req->min_rate > parent_req.min_rate)
parent_req.min_rate = req->min_rate;
if (req->max_rate < parent_req.max_rate)
parent_req.max_rate = req->max_rate;
ret = __clk_determine_rate(req->best_parent_hw, &parent_req);
if (ret)
return ret;
req->rate = req->best_parent_rate = parent_req.rate;
req->rate /= mux_div;
return 0;
}
static int clk_gfx3d_set_rate_and_parent(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate, u8 index)
{
struct clk_rcg2_gfx3d *cgfx = to_clk_rcg2_gfx3d(hw);
struct clk_rcg2 *rcg = &cgfx->rcg;
u32 cfg;
int ret;
cfg = rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT;
/* On some targets, the GFX3D RCG may need to divide PLL frequency */
if (cgfx->div > 1)
cfg |= ((2 * cgfx->div) - 1) << CFG_SRC_DIV_SHIFT;
ret = regmap_write(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, cfg);
if (ret)
return ret;
return update_config(rcg);
}
static int clk_gfx3d_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
/*
* We should never get here; clk_gfx3d_determine_rate() should always
* make us use a different parent than what we're currently using, so
* clk_gfx3d_set_rate_and_parent() should always be called.
*/
return 0;
}
const struct clk_ops clk_gfx3d_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_gfx3d_set_rate,
.set_rate_and_parent = clk_gfx3d_set_rate_and_parent,
.determine_rate = clk_gfx3d_determine_rate,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_gfx3d_ops);
static int
clk_rcg2_shared_force_enable_clear(struct clk_hw *hw, const struct freq_tbl *f)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int ret;
ret = clk_rcg2_set_force_enable(hw);
if (ret)
return ret;
ret = clk_rcg2_configure(rcg, f);
if (ret)
return ret;
return clk_rcg2_clear_force_enable(hw);
}
static int clk_rcg2_shared_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
const struct freq_tbl *f;
f = qcom_find_freq(rcg->freq_tbl, rate);
if (!f)
return -EINVAL;
/*
* In case clock is disabled, update the M, N and D registers, cache
* the CFG value in parked_cfg and don't hit the update bit of CMD
* register.
*/
if (!clk_hw_is_enabled(hw))
return __clk_rcg2_configure(rcg, f, &rcg->parked_cfg);
return clk_rcg2_shared_force_enable_clear(hw, f);
}
static int clk_rcg2_shared_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
return clk_rcg2_shared_set_rate(hw, rate, parent_rate);
}
static int clk_rcg2_shared_enable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int ret;
/*
* Set the update bit because required configuration has already
* been written in clk_rcg2_shared_set_rate()
*/
ret = clk_rcg2_set_force_enable(hw);
if (ret)
return ret;
/* Write back the stored configuration corresponding to current rate */
ret = regmap_write(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, rcg->parked_cfg);
if (ret)
return ret;
ret = update_config(rcg);
if (ret)
return ret;
return clk_rcg2_clear_force_enable(hw);
}
static void clk_rcg2_shared_disable(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
/*
* Store current configuration as switching to safe source would clear
* the SRC and DIV of CFG register
*/
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &rcg->parked_cfg);
/*
* Park the RCG at a safe configuration - sourced off of safe source.
* Force enable and disable the RCG while configuring it to safeguard
* against any update signal coming from the downstream clock.
* The current parent is still prepared and enabled at this point, and
* the safe source is always on while application processor subsystem
* is online. Therefore, the RCG can safely switch its parent.
*/
clk_rcg2_set_force_enable(hw);
regmap_write(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG,
rcg->safe_src_index << CFG_SRC_SEL_SHIFT);
update_config(rcg);
clk_rcg2_clear_force_enable(hw);
}
static u8 clk_rcg2_shared_get_parent(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
/* If the shared rcg is parked use the cached cfg instead */
if (!clk_hw_is_enabled(hw))
return __clk_rcg2_get_parent(hw, rcg->parked_cfg);
return clk_rcg2_get_parent(hw);
}
static int clk_rcg2_shared_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
/* If the shared rcg is parked only update the cached cfg */
if (!clk_hw_is_enabled(hw)) {
rcg->parked_cfg &= ~CFG_SRC_SEL_MASK;
rcg->parked_cfg |= rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT;
return 0;
}
return clk_rcg2_set_parent(hw, index);
}
static unsigned long
clk_rcg2_shared_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
/* If the shared rcg is parked use the cached cfg instead */
if (!clk_hw_is_enabled(hw))
return __clk_rcg2_recalc_rate(hw, parent_rate, rcg->parked_cfg);
return clk_rcg2_recalc_rate(hw, parent_rate);
}
const struct clk_ops clk_rcg2_shared_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.enable = clk_rcg2_shared_enable,
.disable = clk_rcg2_shared_disable,
.get_parent = clk_rcg2_shared_get_parent,
.set_parent = clk_rcg2_shared_set_parent,
.recalc_rate = clk_rcg2_shared_recalc_rate,
.determine_rate = clk_rcg2_determine_rate,
.set_rate = clk_rcg2_shared_set_rate,
.set_rate_and_parent = clk_rcg2_shared_set_rate_and_parent,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_rcg2_shared_ops);
/* Common APIs to be used for DFS based RCGR */
static int clk_rcg2_dfs_populate_freq(struct clk_hw *hw, unsigned int l,
struct freq_tbl *f)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_hw *p;
unsigned long prate = 0;
u32 val, mask, cfg, mode, src;
int i, num_parents;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_DFSR(l), &cfg);
mask = BIT(rcg->hid_width) - 1;
f->pre_div = 1;
if (cfg & mask)
f->pre_div = cfg & mask;
src = cfg & CFG_SRC_SEL_MASK;
src >>= CFG_SRC_SEL_SHIFT;
num_parents = clk_hw_get_num_parents(hw);
for (i = 0; i < num_parents; i++) {
if (src == rcg->parent_map[i].cfg) {
f->src = rcg->parent_map[i].src;
p = clk_hw_get_parent_by_index(&rcg->clkr.hw, i);
if (!p)
return -EINVAL;
prate = clk_hw_get_rate(p);
}
}
mode = cfg & CFG_MODE_MASK;
mode >>= CFG_MODE_SHIFT;
if (mode) {
mask = BIT(rcg->mnd_width) - 1;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_M_DFSR(l),
&val);
val &= mask;
f->m = val;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_N_DFSR(l),
&val);
val = ~val;
val &= mask;
val += f->m;
f->n = val;
}
f->freq = calc_rate(prate, f->m, f->n, mode, f->pre_div);
return 0;
}
static int clk_rcg2_dfs_populate_freq_table(struct clk_rcg2 *rcg)
{
struct freq_tbl *freq_tbl;
int i, ret;
/* Allocate space for 1 extra since table is NULL terminated */
freq_tbl = kcalloc(MAX_PERF_LEVEL + 1, sizeof(*freq_tbl), GFP_KERNEL);
if (!freq_tbl)
return -ENOMEM;
rcg->freq_tbl = freq_tbl;
for (i = 0; i < MAX_PERF_LEVEL; i++) {
ret =
clk_rcg2_dfs_populate_freq(&rcg->clkr.hw, i, freq_tbl + i);
if (ret)
return ret;
}
return ret;
}
static int clk_rcg2_dfs_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
int ret;
if (!rcg->freq_tbl) {
ret = clk_rcg2_dfs_populate_freq_table(rcg);
if (ret) {
pr_err("Failed to update DFS tables for %s\n",
clk_hw_get_name(hw));
return ret;
}
}
return clk_rcg2_determine_rate(hw, req);
}
static unsigned long
clk_rcg2_dfs_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
u32 level, mask, cfg, m = 0, n = 0, mode, pre_div;
regmap_read(rcg->clkr.regmap,
rcg->cmd_rcgr + SE_CMD_DFSR_OFFSET, &level);
level &= GENMASK(4, 1);
level >>= 1;
if (rcg->freq_tbl)
return rcg->freq_tbl[level].freq;
/*
* Assume that parent_rate is actually the parent because
* we can't do any better at figuring it out when the table
* hasn't been populated yet. We only populate the table
* in determine_rate because we can't guarantee the parents
* will be registered with the framework until then.
*/
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_DFSR(level),
&cfg);
mask = BIT(rcg->hid_width) - 1;
pre_div = 1;
if (cfg & mask)
pre_div = cfg & mask;
mode = cfg & CFG_MODE_MASK;
mode >>= CFG_MODE_SHIFT;
if (mode) {
mask = BIT(rcg->mnd_width) - 1;
regmap_read(rcg->clkr.regmap,
rcg->cmd_rcgr + SE_PERF_M_DFSR(level), &m);
m &= mask;
regmap_read(rcg->clkr.regmap,
rcg->cmd_rcgr + SE_PERF_N_DFSR(level), &n);
n = ~n;
n &= mask;
n += m;
}
return calc_rate(parent_rate, m, n, mode, pre_div);
}
static const struct clk_ops clk_rcg2_dfs_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.determine_rate = clk_rcg2_dfs_determine_rate,
.recalc_rate = clk_rcg2_dfs_recalc_rate,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
/* Common APIs to be used for CESTA based RCGR */
static int clk_rcg2_crm_err_dump(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
int ret;
ret = crm_dump_regs(crm->name);
if (ret)
pr_err("%s %s failed ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret);
return ret;
}
static int clk_rcg2_crmc_populate_freq(struct clk_hw *hw, unsigned int l,
struct freq_tbl *f)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
struct clk_hw *p;
unsigned long prate = 0;
u32 mask, rcgr_cfg, src, pll_lval, lval, alpha_val, num_parents, i;
u32 vcd = rcg->clkr.crm_vcd;
if (!crm->regmap_crmc) {
pr_err("%s crmc regmap error\n", __func__);
return -ENODEV;
}
regmap_read(crm->regmap_crmc, CRMC_OFFS_CFG_RCGR(crm, vcd, l), &rcgr_cfg);
regmap_read(crm->regmap_crmc, CRMC_OFFS_L_VAL(crm, vcd, l), &pll_lval);
mask = BIT(rcg->hid_width) - 1;
f->pre_div = 1;
if (rcgr_cfg & mask)
f->pre_div = rcgr_cfg & mask;
src = rcgr_cfg & CFG_SRC_SEL_MASK;
src >>= CFG_SRC_SEL_SHIFT;
lval = pll_lval & PLL_L_VAL_MASK;
alpha_val = (pll_lval & PLL_ALPHA_VAL_MASK) >> PLL_ALPHA_VAL_SHIFT;
num_parents = clk_hw_get_num_parents(hw);
for (i = 0; i < num_parents; i++) {
if (src == rcg->parent_map[i].cfg) {
f->src = rcg->parent_map[i].src;
p = clk_hw_get_parent_by_index(&rcg->clkr.hw, i);
if (!p)
return -EINVAL;
if (!lval) {
prate = clk_hw_get_rate(p);
} else if (clk_is_regmap_clk(p)) {
struct clk_regmap *rclk = to_clk_regmap(p);
if (rclk->ops && rclk->ops->calc_pll)
prate = rclk->ops->calc_pll(p, lval, alpha_val);
}
break;
}
}
if (!prate) {
pr_err("%s error clk=%s\n", __func__, qcom_clk_hw_get_name(hw));
return -EINVAL;
}
f->freq = calc_rate(prate, 0, 0, 0, f->pre_div);
return 0;
}
int clk_rcg2_crmc_populate_freq_table(struct clk_rcg2 *rcg)
{
struct freq_tbl *freq_tbl, *curr_freq_tbl;
struct clk_crm *crm = rcg->clkr.crm;
u32 prev_freq = 0;
int i, ret;
/* Allocate space for 1 extra since table is NULL terminated */
freq_tbl = kcalloc(crm->num_perf_ol + 1, sizeof(*freq_tbl), GFP_KERNEL);
if (!freq_tbl)
return -ENOMEM;
rcg->freq_tbl = freq_tbl;
/*
* Skipping first LUT entry as first entry is used to disable RCG
*/
for (i = 0; i < crm->num_perf_ol; i++) {
ret = clk_rcg2_crmc_populate_freq(&rcg->clkr.hw, i + 1,
freq_tbl + i);
if (ret)
return ret;
curr_freq_tbl = freq_tbl + i;
/*
* Two of the same/decreasing frequencies means end of LUT
*/
if (prev_freq >= curr_freq_tbl->freq) {
curr_freq_tbl->freq = 0;
break;
}
prev_freq = curr_freq_tbl->freq;
}
return 0;
}
static int clk_rcg2_crmc_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
int ret;
ret = clk_runtime_get_regmap(&rcg->clkr);
if (ret)
return ret;
ret = qcom_clk_crm_init(rcg->clkr.dev, crm);
if (ret) {
pr_err("%s Failed to initialize CRM ret=%d clk=%s\n",
__func__, ret, qcom_clk_hw_get_name(hw));
goto err;
}
if (!rcg->freq_populated) {
ret = clk_rcg2_crmc_populate_freq_table(rcg);
if (ret) {
pr_err("%s Failed to populate crmc tables for %s\n",
__func__, qcom_clk_hw_get_name(hw));
goto err;
}
rcg->freq_populated = true;
}
ret = clk_rcg2_determine_rate(hw, req);
err:
clk_runtime_put_regmap(&rcg->clkr);
return ret;
}
static int clk_rcg2_vote_perf_level(struct clk_hw *hw, unsigned long rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
struct crm_cmd cmd;
int perf_index;
int ret, i;
if (!rcg->freq_tbl || !crm->initialized) {
pr_err("%s rcg=%s rate=%ld\n", __func__,
qcom_clk_hw_get_name(hw), rate);
return -EINVAL;
}
perf_index = qcom_find_crm_freq_index(rcg->freq_tbl, rate);
if (perf_index < 0 || perf_index >= crm->num_perf_ol) {
pr_err("%s rcg name %s perf_index=%d\n", __func__,
qcom_clk_hw_get_name(hw), perf_index);
return -EINVAL;
}
cmd.data = perf_index;
cmd.resource_idx = rcg->clkr.crm_vcd;
cmd.wait = 1;
for (i = 0; i < MAX_CRM_SW_DRV_STATE; i++) {
cmd.pwr_state.sw = i;
ret = crm_write_perf_ol(crm->dev, CRM_SW_DRV, 0, &cmd);
if (ret) {
pr_err("%s err write_perf_ol rcg name %s ret=%d\n",
__func__, qcom_clk_hw_get_name(hw), ret);
if (ret == -ETIMEDOUT)
clk_rcg2_crm_err_dump(hw);
}
}
return ret;
}
static int clk_rcg2_crmc_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
rcg->current_freq = rate;
if (!clk_hw_is_prepared(hw))
return 0;
return clk_rcg2_vote_perf_level(hw, rate);
}
/**
* clk_rcg2_crmc_prepare() - cesta rcg/vcd prepare call back for cesta managed clks
*
* @hw: clk to operate on
*
* Vote clock by updating the perf_level to level required by
* the current rate of the clock if it hasn't been initialized before.
* Vdd_level and level required by current clock rate mismatches can
* occur due to error cases and upon initial clock registration
* if the clock becomes an orphan and is later reparented.
*
* Returns 0 on success, -EERROR otherwise.
*/
int clk_rcg2_crmc_prepare(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
if (!rcg->current_freq)
rcg->current_freq = cxo_f.freq;
return clk_rcg2_vote_perf_level(hw, rcg->current_freq);
}
/**
* clk_rcg2_crmc_unprepare() - standard prepare call back for regmap clks
*
* @hw: clk to operate on
*
* Unprepare the clock by removing the outstanding perf_level vote.
*
*/
void clk_rcg2_crmc_unprepare(struct clk_hw *hw)
{
int ret;
/*
* Cesta will park RCG at a safe configuration that is CP0 perf level
*/
ret = clk_rcg2_vote_perf_level(hw, 0);
if (ret)
pr_err("%s rcg name=%s ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret);
}
unsigned long clk_rcg2_crmc_hw_set_rate(struct clk_hw *hw,
enum crm_drv_type client_type, u32 client_idx,
u32 pwr_st, unsigned long rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
struct crm_cmd cmd;
int ret, perf_index;
perf_index = qcom_find_crm_freq_index(rcg->freq_tbl, rate);
if (perf_index < 0 || perf_index >= crm->num_perf_ol) {
pr_err("%s rcg name %s perf_index=%d\n", __func__,
qcom_clk_hw_get_name(hw), perf_index);
return -EINVAL;
}
cmd.resource_idx = rcg->clkr.crm_vcd;
cmd.data = perf_index;
cmd.wait = 1;
cmd.pwr_state.hw = pwr_st;
ret = crm_write_perf_ol(crm->dev, client_type, client_idx, &cmd);
if (ret) {
pr_err("%s err write_perf_ol rcg name %s ret=%d\n",
__func__, qcom_clk_hw_get_name(hw), ret);
if (ret == -ETIMEDOUT)
clk_rcg2_crm_err_dump(hw);
}
return ret;
}
static struct clk_regmap_ops clk_rcg2_crmc_regmap_ops = {
.set_crm_rate = clk_rcg2_crmc_hw_set_rate,
.list_rate = clk_rcg2_list_rate,
.list_registers = clk_rcg2_list_registers,
};
static int clk_rcg2_crmc_init(struct clk_hw *hw)
{
struct clk_regmap *rclk = to_clk_regmap(hw);
if (!rclk->ops)
rclk->ops = &clk_rcg2_crmc_regmap_ops;
return 0;
}
static unsigned long
clk_rcg2_crmc_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
/*
* CRM-controlled clocks have multiple SW and HW voters. We need to
* return the Linux SW vote instead of the current HW rate. The HW rate
* is a result of aggregating across all clients. If we return the
* aggregated rate, then subsequent clk_set_rate() calls can
* short-circuit before calling our set_rate() callback, even if we
* haven't sent a vote for that new rate on behalf of our SW client
* yet. Failing to do so can result in the clock frequency dropping
* below the rate expected by the framework and consumer.
*/
return rcg->current_freq;
}
const struct clk_ops clk_rcg2_crmc_ops = {
.prepare = clk_rcg2_crmc_prepare,
.unprepare = clk_rcg2_crmc_unprepare,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_rate = clk_rcg2_crmc_set_rate,
.determine_rate = clk_rcg2_crmc_determine_rate,
.recalc_rate = clk_rcg2_crmc_recalc_rate,
.init = clk_rcg2_crmc_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL(clk_rcg2_crmc_ops);
static int clk_rcg2_vote_bw(struct clk_hw *hw, unsigned long rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
struct crm_cmd cmd = {0};
int ret, i;
if (rate)
rate /= 1000000;
cmd.resource_idx = 0;
cmd.wait = 1;
cmd.data = BCM_TCS_CMD(1, 1, 0, rate);
for (i = 0; i < MAX_CRM_SW_DRV_STATE; i++) {
cmd.pwr_state.sw = i;
ret = crm_write_bw_vote(crm->dev, CRM_SW_DRV, 0, &cmd);
if (ret) {
pr_err("%s err crm_write_bw_vote rcg name %s ret=%d\n",
__func__, qcom_clk_hw_get_name(hw), ret);
if (ret == -ETIMEDOUT)
clk_rcg2_crm_err_dump(hw);
}
}
return ret;
}
/**
* clk_rcg2_crmb_prepare() - cesta rcg/vcd prepare call back for cesta managed clks
*
* @hw: clk to operate on
*
* Vote clock by updating the perf_level to level required by
* the current rate of the clock if it hasn't been initialized before.
* Vdd_level and level required by current clock rate mismatches can
* occur due to error cases and upon initial clock registration
* if the clock becomes an orphan and is later reparented.
*
* Returns 0 on success, -EERROR otherwise.
*/
int clk_rcg2_crmb_prepare(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
if (!rcg->freq_tbl || !crm->initialized)
return 0;
return clk_rcg2_vote_bw(hw, rcg->current_freq);
}
/**
* clk_rcg2_crmb_unprepare() - standard prepare call back for regmap clks
*
* @hw: clk to operate on
*
* Unprepare the clock by removing the outstanding perf_level vote.
*
*/
void clk_rcg2_crmb_unprepare(struct clk_hw *hw)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
int ret;
if (!rcg->freq_tbl || !crm->initialized)
return;
/*
* Cesta will park RCG at a safe configuration that is CP0 perf level
*/
ret = clk_rcg2_vote_bw(hw, 0);
if (ret)
pr_err("%s clk_rcg2_vote_bw rcg name %s ret=%d\n",
__func__, qcom_clk_hw_get_name(hw), ret);
}
static int clk_rcg2_crmb_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
int ret;
rcg->current_freq = rate;
if (!clk_hw_is_prepared(hw))
return 0;
if (rcg->freq_tbl && crm->initialized) {
ret = clk_rcg2_vote_bw(hw, rate);
if (ret)
pr_err("%s clk_rcg2_vote_bw rcg name %s ret=%d\n",
__func__, qcom_clk_hw_get_name(hw), ret);
return ret;
}
return -EINVAL;
}
unsigned long clk_rcg2_crmb_set_crmb_rate(struct clk_hw *hw,
enum crm_drv_type client_type, u32 client_idx,
u32 nd_idx, u32 pwr_st, u32 ab_rate, u32 ib_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct clk_crm *crm = rcg->clkr.crm;
struct crm_cmd cmd = {0};
int ret;
ab_rate /= 1000000;
ib_rate /= 1000000;
if (nd_idx >= rcg->clkr.crm_num_node)
return -EINVAL;
cmd.resource_idx = rcg->clkr.crm_base_node + nd_idx;
cmd.pwr_state.hw = pwr_st;
cmd.wait = 1;
cmd.data = BCM_TCS_CMD(1, 1, ab_rate, ib_rate);
ret = crm_write_bw_vote(crm->dev, client_type, client_idx, &cmd);
if (ret) {
pr_err("%s err rcg name %s cmd.data=0x%x ret=%d\n",
__func__, qcom_clk_hw_get_name(hw), cmd.data, ret);
if (ret == -ETIMEDOUT)
clk_rcg2_crm_err_dump(hw);
}
return ret;
}
unsigned long clk_rcg2_crmb_set_crm_rate(struct clk_hw *hw,
enum crm_drv_type client_type, u32 client_idx,
u32 pwr_st, unsigned long rate)
{
return clk_rcg2_crmb_set_crmb_rate(hw, client_type, client_idx,
0, pwr_st, rate, 0);
}
static struct clk_regmap_ops clk_rcg2_crmb_regmap_ops = {
.set_crm_rate = clk_rcg2_crmb_set_crm_rate,
.set_crmb_rate = clk_rcg2_crmb_set_crmb_rate,
.list_rate = clk_rcg2_list_rate,
.list_registers = clk_rcg2_list_registers,
};
static int clk_rcg2_crmb_init(struct clk_hw *hw)
{
struct clk_regmap *rclk = to_clk_regmap(hw);
if (!rclk->ops)
rclk->ops = &clk_rcg2_crmb_regmap_ops;
return 0;
}
const struct clk_ops clk_rcg2_crmb_ops = {
.prepare = clk_rcg2_crmb_prepare,
.unprepare = clk_rcg2_crmb_unprepare,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_rate = clk_rcg2_crmb_set_rate,
.determine_rate = clk_rcg2_crmc_determine_rate,
.recalc_rate = clk_rcg2_crmc_recalc_rate,
.init = clk_rcg2_crmb_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL(clk_rcg2_crmb_ops);
static int clk_rcg2_enable_dfs(const struct clk_rcg_dfs_data *data,
struct regmap *regmap)
{
struct clk_rcg2 *rcg = data->rcg;
struct clk_init_data *init = data->init;
u32 val;
int ret;
rcg->flags |= DFS_SUPPORT;
ret = regmap_read(regmap, rcg->cmd_rcgr + SE_CMD_DFSR_OFFSET, &val);
if (ret)
return -EINVAL;
if (!(val & SE_CMD_DFS_EN))
return 0;
/*
* Rate changes with consumer writing a register in
* their own I/O region
*/
init->flags |= CLK_GET_RATE_NOCACHE;
init->ops = &clk_rcg2_dfs_ops;
rcg->freq_tbl = NULL;
return 0;
}
int qcom_cc_register_rcg_dfs(struct regmap *regmap,
const struct clk_rcg_dfs_data *rcgs, size_t len)
{
int i, ret;
for (i = 0; i < len; i++) {
ret = clk_rcg2_enable_dfs(&rcgs[i], regmap);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(qcom_cc_register_rcg_dfs);
static int clk_rcg2_dp_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
struct freq_tbl f = { 0 };
u32 mask = BIT(rcg->hid_width) - 1;
u32 hid_div, cfg;
int i, num_parents = clk_hw_get_num_parents(hw);
unsigned long num, den;
rational_best_approximation(parent_rate, rate,
GENMASK(rcg->mnd_width - 1, 0),
GENMASK(rcg->mnd_width - 1, 0), &den, &num);
if (!num || !den)
return -EINVAL;
regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg);
hid_div = cfg;
cfg &= CFG_SRC_SEL_MASK;
cfg >>= CFG_SRC_SEL_SHIFT;
for (i = 0; i < num_parents; i++) {
if (cfg == rcg->parent_map[i].cfg) {
f.src = rcg->parent_map[i].src;
break;
}
}
f.pre_div = hid_div;
f.pre_div >>= CFG_SRC_DIV_SHIFT;
f.pre_div &= mask;
if (num != den) {
f.m = num;
f.n = den;
} else {
f.m = 0;
f.n = 0;
}
return clk_rcg2_configure(rcg, &f);
}
static int clk_rcg2_dp_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate, u8 index)
{
return clk_rcg2_dp_set_rate(hw, rate, parent_rate);
}
static int clk_rcg2_dp_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_rcg2 *rcg = to_clk_rcg2(hw);
unsigned long num, den;
u64 tmp;
/* Parent rate is a fixed phy link rate */
rational_best_approximation(req->best_parent_rate, req->rate,
GENMASK(rcg->mnd_width - 1, 0),
GENMASK(rcg->mnd_width - 1, 0), &den, &num);
if (!num || !den)
return -EINVAL;
tmp = req->best_parent_rate * num;
do_div(tmp, den);
req->rate = tmp;
return 0;
}
const struct clk_ops clk_dp_ops = {
.prepare = clk_prepare_regmap,
.unprepare = clk_unprepare_regmap,
.pre_rate_change = clk_pre_change_regmap,
.post_rate_change = clk_post_change_regmap,
.is_enabled = clk_rcg2_is_enabled,
.get_parent = clk_rcg2_get_parent,
.set_parent = clk_rcg2_set_parent,
.recalc_rate = clk_rcg2_recalc_rate,
.set_rate = clk_rcg2_dp_set_rate,
.set_rate_and_parent = clk_rcg2_dp_set_rate_and_parent,
.determine_rate = clk_rcg2_dp_determine_rate,
.init = clk_rcg2_init,
.debug_init = clk_common_debug_init,
};
EXPORT_SYMBOL_GPL(clk_dp_ops);