// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013, 2016-2018, 2020-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clk-rcg.h" #include "common.h" #include "clk-debug.h" #define CMD_REG 0x0 #define CMD_UPDATE BIT(0) #define CMD_ROOT_EN BIT(1) #define CMD_DIRTY_CFG BIT(4) #define CMD_DIRTY_N BIT(5) #define CMD_DIRTY_M BIT(6) #define CMD_DIRTY_D BIT(7) #define CMD_ROOT_OFF BIT(31) #define CFG_REG 0x4 #define CFG_SRC_DIV_SHIFT 0 #define CFG_SRC_SEL_SHIFT 8 #define CFG_SRC_SEL_MASK (0x7 << CFG_SRC_SEL_SHIFT) #define CFG_MODE_SHIFT 12 #define CFG_MODE_MASK (0x3 << CFG_MODE_SHIFT) #define CFG_MODE_DUAL_EDGE (0x2 << CFG_MODE_SHIFT) #define CFG_HW_CLK_CTRL_MASK BIT(20) #define M_REG 0x8 #define N_REG 0xc #define D_REG 0x10 #define RCG_CFG_OFFSET(rcg) ((rcg)->cmd_rcgr + (rcg)->cfg_off + CFG_REG) #define RCG_M_OFFSET(rcg) ((rcg)->cmd_rcgr + (rcg)->cfg_off + M_REG) #define RCG_N_OFFSET(rcg) ((rcg)->cmd_rcgr + (rcg)->cfg_off + N_REG) #define RCG_D_OFFSET(rcg) ((rcg)->cmd_rcgr + (rcg)->cfg_off + D_REG) /* Dynamic Frequency Scaling */ #define MAX_PERF_LEVEL 8 #define SE_CMD_DFSR_OFFSET 0x14 #define SE_CMD_DFS_EN BIT(0) #define SE_PERF_DFSR(level) (0x1c + 0x4 * (level)) #define SE_PERF_M_DFSR(level) (0x5c + 0x4 * (level)) #define SE_PERF_N_DFSR(level) (0x9c + 0x4 * (level)) /* Cesta configuration*/ #define MAX_VCD_PER_CRM 9 #define MAX_PERF_OL_PER_VCD 4 #define MAX_CRM_SW_DRV_STATE 3 #define CRMC_OFFS_VCD(crm, _vcd) \ ((crm)->offsets.vcd * (_vcd)) #define CRMC_OFFS_LUT(crm, vcd, _level) \ (CRMC_OFFS_VCD(crm, vcd) + ((crm)->offsets.level * (_level))) #define CRMC_OFFS_CURR_PERF(crm, vcd) \ (CRMC_OFFS_VCD(crm, vcd) + (crm)->regs.curr_perf) #define CRMC_OFFS_CFG_RCGR(crm, vcd, level) \ (CRMC_OFFS_LUT(crm, vcd, level) + (crm)->regs.cfg_rcgr) #define CRMC_OFFS_L_VAL(crm, vcd, level) \ (CRMC_OFFS_LUT(crm, vcd, level) + (crm)->regs.l_val) #define PLL_L_VAL_MASK GENMASK(7, 0) #define PLL_ALPHA_VAL_MASK GENMASK(31, 16) #define PLL_ALPHA_VAL_SHIFT 16 enum freq_policy { FLOOR, CEIL, }; static struct freq_tbl cxo_f = { .freq = 19200000, .src = 0, .pre_div = 1, .m = 0, .n = 0, }; static int clk_rcg2_is_enabled(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); u32 cmd; int ret; ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, &cmd); if (ret) return ret; return (cmd & CMD_ROOT_OFF) == 0; } static u8 __clk_rcg2_get_parent(struct clk_hw *hw, u32 cfg) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); int num_parents = clk_hw_get_num_parents(hw); int i; cfg &= CFG_SRC_SEL_MASK; cfg >>= CFG_SRC_SEL_SHIFT; for (i = 0; i < num_parents; i++) if (cfg == rcg->parent_map[i].cfg) return i; pr_debug("%s: Clock %s has invalid parent, using default.\n", __func__, clk_hw_get_name(hw)); return 0; } static u8 clk_rcg2_get_parent(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); u32 cfg; int ret; ret = regmap_read(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), &cfg); if (ret) { pr_debug("%s: Unable to read CFG register for %s\n", __func__, clk_hw_get_name(hw)); return 0; } return __clk_rcg2_get_parent(hw, cfg); } static int get_update_timeout(const struct clk_rcg2 *rcg) { int timeout = 0; /* * The time it takes an RCG to update is roughly 3 clock cycles of the * old and new clock rates. */ if (rcg->current_freq) timeout += 3 * (1000000 / rcg->current_freq); if (rcg->configured_freq) timeout += 3 * (1000000 / rcg->configured_freq); return max(timeout, 500); } static int update_config(struct clk_rcg2 *rcg) { int timeout, count, ret; u32 cmd; struct clk_hw *hw = &rcg->clkr.hw; ret = regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, CMD_UPDATE, CMD_UPDATE); if (ret) return ret; timeout = get_update_timeout(rcg); /* Wait for update to take effect */ for (count = timeout; count > 0; count--) { ret = regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, &cmd); if (ret) return ret; if (!(cmd & CMD_UPDATE)) return 0; udelay(1); } WARN_CLK(hw, 1, "rcg didn't update its configuration after %d us.", timeout); return -EBUSY; } static int clk_rcg2_set_parent(struct clk_hw *hw, u8 index) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); int ret; u32 cfg = rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT; ret = regmap_update_bits(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), CFG_SRC_SEL_MASK, cfg); if (ret) return ret; return update_config(rcg); } static int clk_rcg2_set_force_enable(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); int ret = 0, count = 500; ret = regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, CMD_ROOT_EN, CMD_ROOT_EN); if (ret) return ret; for (; count > 0; count--) { if (clk_rcg2_is_enabled(hw)) return ret; /* Delay for 1usec and retry polling the status bit */ udelay(1); } WARN_CLK(hw, 1, "rcg didn't turn on."); return ret; } static int clk_rcg2_clear_force_enable(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); return regmap_update_bits(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, CMD_ROOT_EN, 0); } static bool clk_rcg2_is_force_enabled(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); u32 val = 0; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CMD_REG, &val); return val & CMD_ROOT_EN; } static int prepare_enable_rcg_srcs(struct clk *curr, struct clk *new) { int rc = 0; rc = clk_prepare(curr); if (rc) return rc; rc = clk_prepare(new); if (rc) goto err_new_src_prepare; rc = clk_enable(curr); if (rc) goto err_curr_src_enable; rc = clk_enable(new); if (rc) goto err_new_src_enable; return rc; err_new_src_enable: clk_disable(curr); err_curr_src_enable: clk_unprepare(new); err_new_src_prepare: clk_unprepare(curr); return rc; } static void disable_unprepare_rcg_srcs(struct clk *curr, struct clk *new) { clk_disable(new); clk_disable(curr); clk_unprepare(new); clk_unprepare(curr); } /* * Calculate m/n:d rate * * parent_rate m * rate = ----------- x --- * hid_div n */ static unsigned long calc_rate(unsigned long rate, u32 m, u32 n, u32 mode, u32 hid_div) { if (hid_div) rate = mult_frac(rate, 2, hid_div + 1); if (mode) rate = mult_frac(rate, m, n); return rate; } static unsigned long __clk_rcg2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate, u32 cfg) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); const struct freq_tbl *f_curr; u32 src, hid_div, m = 0, n = 0, mode = 0, mask; unsigned long rrate = 0; src = cfg; src &= CFG_SRC_SEL_MASK; src >>= CFG_SRC_SEL_SHIFT; if (rcg->enable_safe_config && (!clk_hw_is_prepared(hw) || !clk_hw_is_enabled(hw)) && !src) { if (!rcg->current_freq) rcg->current_freq = cxo_f.freq; if (!(clk_hw_get_flags(hw) & CLK_GET_RATE_NOCACHE)) return rcg->current_freq; } if (rcg->mnd_width) { mask = BIT(rcg->mnd_width) - 1; regmap_read(rcg->clkr.regmap, RCG_M_OFFSET(rcg), &m); m &= mask; regmap_read(rcg->clkr.regmap, RCG_N_OFFSET(rcg), &n); n = ~n; n &= mask; n += m; mode = cfg & CFG_MODE_MASK; mode >>= CFG_MODE_SHIFT; } if (rcg->enable_safe_config && !src) { f_curr = qcom_find_freq(rcg->freq_tbl, rcg->current_freq); if (!f_curr) return -EINVAL; hid_div = f_curr->pre_div; } else { mask = BIT(rcg->hid_width) - 1; hid_div = cfg >> CFG_SRC_DIV_SHIFT; hid_div &= mask; } rrate = calc_rate(parent_rate, m, n, mode, hid_div); /* * Check to cover the case when the RCG has been initialized to a * non-CXO frequency before the clock driver has taken control of it. */ if (rcg->enable_safe_config && !rcg->current_freq) rcg->current_freq = rrate; return rrate; } static unsigned long clk_rcg2_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); u32 cfg; regmap_read(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), &cfg); return __clk_rcg2_recalc_rate(hw, parent_rate, cfg); } static int _freq_tbl_determine_rate(struct clk_hw *hw, const struct freq_tbl *f, struct clk_rate_request *req, enum freq_policy policy) { unsigned long clk_flags, rate = req->rate; struct clk_rate_request parent_req = { }; struct clk_hw *p; struct clk_rcg2 *rcg = to_clk_rcg2(hw); int index, ret = 0; switch (policy) { case FLOOR: f = qcom_find_freq_floor(f, rate); break; case CEIL: f = qcom_find_freq(f, rate); break; default: return -EINVAL; } if (!f) return -EINVAL; index = qcom_find_src_index(hw, rcg->parent_map, f->src); if (index < 0) return index; clk_flags = clk_hw_get_flags(hw); p = clk_hw_get_parent_by_index(hw, index); if (!p) return -EINVAL; if (clk_flags & CLK_SET_RATE_PARENT) { rate = f->freq; if (f->pre_div) { if (!rate) rate = req->rate; rate /= 2; rate *= f->pre_div + 1; } if (f->n) { u64 tmp = rate; tmp = tmp * f->n; do_div(tmp, f->m); rate = tmp; } } else { rate = clk_hw_get_rate(p); } req->best_parent_hw = p; req->best_parent_rate = clk_hw_round_rate(p, rate); req->rate = f->freq; if (f->src_freq != FIXED_FREQ_SRC) { rate = parent_req.rate = f->src_freq; parent_req.best_parent_hw = p; ret = __clk_determine_rate(p, &parent_req); if (ret) return ret; ret = clk_set_rate(p->clk, parent_req.rate); if (ret) { pr_err("Failed set rate(%lu) on parent for non-fixed source\n", parent_req.rate); return ret; } } return 0; } static int clk_rcg2_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); return _freq_tbl_determine_rate(hw, rcg->freq_tbl, req, CEIL); } static int clk_rcg2_determine_floor_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); return _freq_tbl_determine_rate(hw, rcg->freq_tbl, req, FLOOR); } static int __clk_rcg2_configure(struct clk_rcg2 *rcg, const struct freq_tbl *f, u32 *_cfg) { u32 cfg, mask, d_val, not2d_val, n_minus_m; struct clk_hw *hw = &rcg->clkr.hw; int ret, index = qcom_find_src_index(hw, rcg->parent_map, f->src); if (index < 0) return index; if (rcg->mnd_width && f->n) { mask = BIT(rcg->mnd_width) - 1; ret = regmap_update_bits(rcg->clkr.regmap, RCG_M_OFFSET(rcg), mask, f->m); if (ret) return ret; ret = regmap_update_bits(rcg->clkr.regmap, RCG_N_OFFSET(rcg), mask, ~(f->n - f->m)); if (ret) return ret; /* Calculate 2d value */ d_val = f->n; n_minus_m = f->n - f->m; n_minus_m *= 2; d_val = clamp_t(u32, d_val, f->m, n_minus_m); not2d_val = ~d_val & mask; ret = regmap_update_bits(rcg->clkr.regmap, RCG_D_OFFSET(rcg), mask, not2d_val); if (ret) return ret; } mask = BIT(rcg->hid_width) - 1; mask |= CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK; cfg = f->pre_div << CFG_SRC_DIV_SHIFT; cfg |= rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT; if (rcg->mnd_width && f->n && (f->m != f->n)) cfg |= CFG_MODE_DUAL_EDGE; if (rcg->hw_clk_ctrl || rcg->flags & HW_CLK_CTRL_MODE) cfg |= CFG_HW_CLK_CTRL_MASK; *_cfg &= ~mask; *_cfg |= cfg; return 0; } static int clk_rcg2_configure(struct clk_rcg2 *rcg, const struct freq_tbl *f) { u32 cfg; int ret; ret = regmap_read(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), &cfg); if (ret) return ret; ret = __clk_rcg2_configure(rcg, f, &cfg); if (ret) return ret; ret = regmap_write(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), cfg); if (ret) return ret; rcg->configured_freq = f->freq; return update_config(rcg); } static void clk_rcg2_list_registers(struct seq_file *f, struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); static struct clk_register_data *data; int i, val; static struct clk_register_data data1[] = { {"CMD_RCGR", 0x0}, {"CFG_RCGR", 0x4}, { }, }; static struct clk_register_data data2[] = { {"CMD_RCGR", 0x0}, {"CFG_RCGR", 0x4}, {"M_VAL", 0x8}, {"N_VAL", 0xC}, {"D_VAL", 0x10}, { }, }; static struct clk_register_data data3[] = { {"CMD_RCGR", 0x0}, {"CFG_RCGR", 0x4}, {"M_VAL", 0x8}, {"N_VAL", 0xC}, {"D_VAL", 0x10}, {"CMD_DFSR", 0x14}, { }, }; if (rcg->flags & DFS_SUPPORT) data = data3; else if (rcg->mnd_width) data = data2; else data = data1; for (i = 0; data[i].name != NULL; i++) { regmap_read(rcg->clkr.regmap, (rcg->cmd_rcgr + data[i].offset), &val); clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val); } } /* Return the nth supported frequency for a given clock. */ static long clk_rcg2_list_rate(struct clk_hw *hw, unsigned int n, unsigned long fmax) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); const struct freq_tbl *f = rcg->freq_tbl; size_t freq_tbl_size = 0; if (!f) return -ENXIO; for (; f->freq; f++) freq_tbl_size++; if (n > freq_tbl_size - 1) return -EINVAL; return (rcg->freq_tbl + n)->freq; } static int __clk_rcg2_set_rate(struct clk_hw *hw, unsigned long rate, enum freq_policy policy) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); const struct freq_tbl *f, *f_curr; int ret, curr_src_index, new_src_index; struct clk_hw *curr_src = NULL, *new_src = NULL; bool force_enabled = false; switch (policy) { case FLOOR: f = qcom_find_freq_floor(rcg->freq_tbl, rate); break; case CEIL: f = qcom_find_freq(rcg->freq_tbl, rate); break; default: return -EINVAL; } if (!f) return -EINVAL; /* * Return if the RCG is currently disabled. This configuration update * will happen as part of the RCG enable sequence. */ if (rcg->enable_safe_config && !clk_hw_is_prepared(hw)) { rcg->current_freq = rate; return 0; } if (rcg->flags & FORCE_ENABLE_RCG) { rcg->current_freq = DIV_ROUND_CLOSEST_ULL( clk_get_rate(hw->clk), 1000) * 1000; if (rcg->current_freq == cxo_f.freq) curr_src_index = 0; else { f_curr = qcom_find_freq(rcg->freq_tbl, rcg->current_freq); if (!f_curr) return -EINVAL; curr_src_index = qcom_find_src_index(hw, rcg->parent_map, f_curr->src); } new_src_index = qcom_find_src_index(hw, rcg->parent_map, f->src); curr_src = clk_hw_get_parent_by_index(hw, curr_src_index); if (!curr_src) return -EINVAL; new_src = clk_hw_get_parent_by_index(hw, new_src_index); if (!new_src) return -EINVAL; /* The RCG could currently be disabled. Enable its parents. */ ret = prepare_enable_rcg_srcs(curr_src->clk, new_src->clk); if (ret) return ret; force_enabled = clk_rcg2_is_force_enabled(hw); if (!force_enabled) clk_rcg2_set_force_enable(hw); } ret = clk_rcg2_configure(rcg, f); if (ret) return ret; if (rcg->flags & FORCE_ENABLE_RCG) { if (!force_enabled) clk_rcg2_clear_force_enable(hw); disable_unprepare_rcg_srcs(curr_src->clk, new_src->clk); } /* Update current frequency with the requested frequency. */ rcg->current_freq = rate; return ret; } static int clk_rcg2_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { return __clk_rcg2_set_rate(hw, rate, CEIL); } static int clk_rcg2_set_floor_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { return __clk_rcg2_set_rate(hw, rate, FLOOR); } static int clk_rcg2_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { return __clk_rcg2_set_rate(hw, rate, CEIL); } static int clk_rcg2_set_floor_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { return __clk_rcg2_set_rate(hw, rate, FLOOR); } static int clk_rcg2_get_duty_cycle(struct clk_hw *hw, struct clk_duty *duty) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); u32 notn_m, n, m, d, not2d, mask; if (!rcg->mnd_width) { /* 50 % duty-cycle for Non-MND RCGs */ duty->num = 1; duty->den = 2; return 0; } regmap_read(rcg->clkr.regmap, RCG_D_OFFSET(rcg), ¬2d); regmap_read(rcg->clkr.regmap, RCG_M_OFFSET(rcg), &m); regmap_read(rcg->clkr.regmap, RCG_N_OFFSET(rcg), ¬n_m); if (!not2d && !m && !notn_m) { /* 50 % duty-cycle always */ duty->num = 1; duty->den = 2; return 0; } mask = BIT(rcg->mnd_width) - 1; d = ~(not2d) & mask; d = DIV_ROUND_CLOSEST(d, 2); n = (~(notn_m) + m) & mask; duty->num = d; duty->den = n; return 0; } static int clk_rcg2_set_duty_cycle(struct clk_hw *hw, struct clk_duty *duty) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); u32 notn_m, n, m, d, not2d, mask, duty_per, cfg; int ret; /* Duty-cycle cannot be modified for non-MND RCGs */ if (!rcg->mnd_width) return -EINVAL; mask = BIT(rcg->mnd_width) - 1; regmap_read(rcg->clkr.regmap, RCG_N_OFFSET(rcg), ¬n_m); regmap_read(rcg->clkr.regmap, RCG_M_OFFSET(rcg), &m); regmap_read(rcg->clkr.regmap, RCG_CFG_OFFSET(rcg), &cfg); /* Duty-cycle cannot be modified if MND divider is in bypass mode. */ if (!(cfg & CFG_MODE_MASK)) return -EINVAL; n = (~(notn_m) + m) & mask; duty_per = (duty->num * 100) / duty->den; /* Calculate 2d value */ d = DIV_ROUND_CLOSEST(n * duty_per * 2, 100); /* * Check bit widths of 2d. If D is too big reduce duty cycle. * Also make sure it is never zero. */ d = clamp_val(d, 1, mask); if ((d / 2) > (n - m)) d = (n - m) * 2; else if ((d / 2) < (m / 2)) d = m; not2d = ~d & mask; ret = regmap_update_bits(rcg->clkr.regmap, RCG_D_OFFSET(rcg), mask, not2d); if (ret) return ret; return update_config(rcg); } static int clk_rcg2_enable(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); unsigned long rate; const struct freq_tbl *f; int ret; if (rcg->flags & FORCE_ENABLE_RCG) clk_rcg2_set_force_enable(hw); if (!rcg->enable_safe_config) return 0; /* * Switch from CXO to the stashed mux selection. Force enable and * disable the RCG while configuring it to safeguard against any update * signal coming from the downstream clock. The current parent has * already been prepared and enabled at this point, and the CXO source * is always on while APPS is online. Therefore, the RCG can safely be * switched. */ rate = rcg->current_freq; f = qcom_find_freq(rcg->freq_tbl, rate); if (!f) return -EINVAL; /* * If CXO is not listed as a supported frequency in the frequency * table, the above API would return the lowest supported frequency * instead. This will lead to incorrect configuration of the RCG. * Check if the RCG rate is CXO and configure it accordingly. */ if (rate == cxo_f.freq) f = &cxo_f; if (!(rcg->flags & FORCE_ENABLE_RCG)) clk_rcg2_set_force_enable(hw); ret = clk_rcg2_configure(rcg, f); if (!(rcg->flags & FORCE_ENABLE_RCG)) clk_rcg2_clear_force_enable(hw); return ret; } static void clk_rcg2_disable(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); int ret; if (!rcg->enable_safe_config) { if (rcg->flags & FORCE_ENABLE_RCG) clk_rcg2_clear_force_enable(hw); return; } /* * Park the RCG at a safe configuration - sourced off the CXO. This is * needed for 2 reasons: In the case of RCGs sourcing PSCBCs, due to a * default HW behavior, the RCG will turn on when its corresponding * GDSC is enabled. We might also have cases when the RCG might be left * enabled without the overlying SW knowing about it. This results from * hard to track cases of downstream clocks being left enabled. In both * these cases, scaling the RCG will fail since it's enabled but with * its sources cut off. * * Save mux select and switch to CXO. Force enable and disable the RCG * while configuring it to safeguard against any update signal coming * from the downstream clock. The current parent is still prepared and * enabled at this point, and the CXO source is always on while APPS is * online. Therefore, the RCG can safely be switched. */ clk_rcg2_set_force_enable(hw); ret = clk_rcg2_configure(rcg, &cxo_f); if (ret) pr_err("%s: CXO configuration failed\n", clk_hw_get_name(hw)); clk_rcg2_clear_force_enable(hw); } static struct clk_regmap_ops clk_rcg2_regmap_ops = { .list_rate = clk_rcg2_list_rate, .list_registers = clk_rcg2_list_registers, }; static int clk_rcg2_init(struct clk_hw *hw) { struct clk_regmap *rclk = to_clk_regmap(hw); if (!rclk->ops) rclk->ops = &clk_rcg2_regmap_ops; return 0; } const struct clk_ops clk_rcg2_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .enable = clk_rcg2_enable, .disable = clk_rcg2_disable, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, .recalc_rate = clk_rcg2_recalc_rate, .determine_rate = clk_rcg2_determine_rate, .set_rate = clk_rcg2_set_rate, .set_rate_and_parent = clk_rcg2_set_rate_and_parent, .get_duty_cycle = clk_rcg2_get_duty_cycle, .set_duty_cycle = clk_rcg2_set_duty_cycle, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_rcg2_ops); const struct clk_ops clk_rcg2_floor_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .enable = clk_rcg2_enable, .disable = clk_rcg2_disable, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, .recalc_rate = clk_rcg2_recalc_rate, .determine_rate = clk_rcg2_determine_floor_rate, .set_rate = clk_rcg2_set_floor_rate, .set_rate_and_parent = clk_rcg2_set_floor_rate_and_parent, .get_duty_cycle = clk_rcg2_get_duty_cycle, .set_duty_cycle = clk_rcg2_set_duty_cycle, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_rcg2_floor_ops); const struct clk_ops clk_rcg2_mux_closest_ops = { .determine_rate = __clk_mux_determine_rate_closest, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, }; EXPORT_SYMBOL_GPL(clk_rcg2_mux_closest_ops); struct frac_entry { int num; int den; }; static const struct frac_entry frac_table_675m[] = { /* link rate of 270M */ { 52, 295 }, /* 119 M */ { 11, 57 }, /* 130.25 M */ { 63, 307 }, /* 138.50 M */ { 11, 50 }, /* 148.50 M */ { 47, 206 }, /* 154 M */ { 31, 100 }, /* 205.25 M */ { 107, 269 }, /* 268.50 M */ { }, }; static struct frac_entry frac_table_810m[] = { /* Link rate of 162M */ { 31, 211 }, /* 119 M */ { 32, 199 }, /* 130.25 M */ { 63, 307 }, /* 138.50 M */ { 11, 60 }, /* 148.50 M */ { 50, 263 }, /* 154 M */ { 31, 120 }, /* 205.25 M */ { 119, 359 }, /* 268.50 M */ { }, }; static int clk_edp_pixel_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct freq_tbl f = *rcg->freq_tbl; const struct frac_entry *frac; int delta = 100000; s64 src_rate = parent_rate; s64 request; u32 mask = BIT(rcg->hid_width) - 1; u32 hid_div; if (src_rate == 810000000) frac = frac_table_810m; else frac = frac_table_675m; for (; frac->num; frac++) { request = rate; request *= frac->den; request = div_s64(request, frac->num); if ((src_rate < (request - delta)) || (src_rate > (request + delta))) continue; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &hid_div); f.pre_div = hid_div; f.pre_div >>= CFG_SRC_DIV_SHIFT; f.pre_div &= mask; f.m = frac->num; f.n = frac->den; return clk_rcg2_configure(rcg, &f); } return -EINVAL; } static int clk_edp_pixel_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { /* Parent index is set statically in frequency table */ return clk_edp_pixel_set_rate(hw, rate, parent_rate); } static int clk_edp_pixel_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); const struct freq_tbl *f = rcg->freq_tbl; const struct frac_entry *frac; int delta = 100000; s64 request; u32 mask = BIT(rcg->hid_width) - 1; u32 hid_div; int index = qcom_find_src_index(hw, rcg->parent_map, f->src); /* Force the correct parent */ req->best_parent_hw = clk_hw_get_parent_by_index(hw, index); if (!req->best_parent_hw) return -EINVAL; req->best_parent_rate = clk_hw_get_rate(req->best_parent_hw); if (req->best_parent_rate == 810000000) frac = frac_table_810m; else frac = frac_table_675m; for (; frac->num; frac++) { request = req->rate; request *= frac->den; request = div_s64(request, frac->num); if ((req->best_parent_rate < (request - delta)) || (req->best_parent_rate > (request + delta))) continue; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &hid_div); hid_div >>= CFG_SRC_DIV_SHIFT; hid_div &= mask; req->rate = calc_rate(req->best_parent_rate, frac->num, frac->den, !!frac->den, hid_div); return 0; } return -EINVAL; } const struct clk_ops clk_edp_pixel_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, .recalc_rate = clk_rcg2_recalc_rate, .set_rate = clk_edp_pixel_set_rate, .set_rate_and_parent = clk_edp_pixel_set_rate_and_parent, .determine_rate = clk_edp_pixel_determine_rate, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_edp_pixel_ops); static int clk_byte_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); const struct freq_tbl *f = rcg->freq_tbl; int index = qcom_find_src_index(hw, rcg->parent_map, f->src); unsigned long parent_rate, div; u32 mask = BIT(rcg->hid_width) - 1; struct clk_hw *p; if (req->rate == 0) return -EINVAL; req->best_parent_hw = p = clk_hw_get_parent_by_index(hw, index); if (!p) return -EINVAL; req->best_parent_rate = parent_rate = clk_hw_round_rate(p, req->rate); div = DIV_ROUND_UP((2 * parent_rate), req->rate) - 1; div = min_t(u32, div, mask); req->rate = calc_rate(parent_rate, 0, 0, 0, div); return 0; } static int clk_byte_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct freq_tbl f = *rcg->freq_tbl; unsigned long div; u32 mask = BIT(rcg->hid_width) - 1; div = DIV_ROUND_UP((2 * parent_rate), rate) - 1; div = min_t(u32, div, mask); f.pre_div = div; return clk_rcg2_configure(rcg, &f); } static int clk_byte_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { /* Parent index is set statically in frequency table */ return clk_byte_set_rate(hw, rate, parent_rate); } const struct clk_ops clk_byte_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, .recalc_rate = clk_rcg2_recalc_rate, .set_rate = clk_byte_set_rate, .set_rate_and_parent = clk_byte_set_rate_and_parent, .determine_rate = clk_byte_determine_rate, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_byte_ops); static int clk_byte2_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); unsigned long parent_rate, div; u32 mask = BIT(rcg->hid_width) - 1; struct clk_hw *p; unsigned long rate = req->rate; p = req->best_parent_hw; if (!p || rate == 0) return -EINVAL; req->best_parent_rate = parent_rate = clk_hw_round_rate(p, rate); div = DIV_ROUND_UP((2 * parent_rate), rate) - 1; div = min_t(u32, div, mask); req->rate = calc_rate(parent_rate, 0, 0, 0, div); return 0; } static int clk_byte2_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct freq_tbl f = { 0 }; unsigned long div; int i, num_parents = clk_hw_get_num_parents(hw); u32 mask = BIT(rcg->hid_width) - 1; u32 cfg; div = DIV_ROUND_UP((2 * parent_rate), rate) - 1; div = min_t(u32, div, mask); f.pre_div = div; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg); cfg &= CFG_SRC_SEL_MASK; cfg >>= CFG_SRC_SEL_SHIFT; for (i = 0; i < num_parents; i++) { if (cfg == rcg->parent_map[i].cfg) { f.src = rcg->parent_map[i].src; return clk_rcg2_configure(rcg, &f); } } return -EINVAL; } static int clk_byte2_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { /* Read the hardware to determine parent during set_rate */ return clk_byte2_set_rate(hw, rate, parent_rate); } const struct clk_ops clk_byte2_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, .recalc_rate = clk_rcg2_recalc_rate, .set_rate = clk_byte2_set_rate, .set_rate_and_parent = clk_byte2_set_rate_and_parent, .determine_rate = clk_byte2_determine_rate, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_byte2_ops); static const struct frac_entry frac_table_pixel[] = { { 3, 8 }, { 2, 9 }, { 4, 9 }, { 1, 1 }, { 2, 3 }, { } }; static int clk_pixel_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { unsigned long request, src_rate; int delta = 100000; const struct frac_entry *frac = frac_table_pixel; if (!req->best_parent_hw) return -EINVAL; for (; frac->num; frac++) { request = (req->rate * frac->den) / frac->num; src_rate = clk_hw_round_rate(req->best_parent_hw, request); if ((src_rate < (request - delta)) || (src_rate > (request + delta))) continue; req->best_parent_rate = src_rate; req->rate = (src_rate * frac->num) / frac->den; return 0; } return -EINVAL; } static int clk_pixel_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct freq_tbl f = { 0 }; const struct frac_entry *frac = frac_table_pixel; unsigned long request; int delta = 100000; u32 mask = BIT(rcg->hid_width) - 1; u32 hid_div, cfg; int i, num_parents = clk_hw_get_num_parents(hw); regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg); cfg &= CFG_SRC_SEL_MASK; cfg >>= CFG_SRC_SEL_SHIFT; for (i = 0; i < num_parents; i++) if (cfg == rcg->parent_map[i].cfg) { f.src = rcg->parent_map[i].src; break; } for (; frac->num; frac++) { request = (rate * frac->den) / frac->num; if ((parent_rate < (request - delta)) || (parent_rate > (request + delta))) continue; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &hid_div); f.pre_div = hid_div; f.pre_div >>= CFG_SRC_DIV_SHIFT; f.pre_div &= mask; f.m = frac->num; f.n = frac->den; return clk_rcg2_configure(rcg, &f); } return -EINVAL; } static int clk_pixel_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { return clk_pixel_set_rate(hw, rate, parent_rate); } const struct clk_ops clk_pixel_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, .recalc_rate = clk_rcg2_recalc_rate, .set_rate = clk_pixel_set_rate, .set_rate_and_parent = clk_pixel_set_rate_and_parent, .determine_rate = clk_pixel_determine_rate, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_pixel_ops); static int clk_gfx3d_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rate_request parent_req = { .min_rate = 0, .max_rate = ULONG_MAX }; struct clk_rcg2_gfx3d *cgfx = to_clk_rcg2_gfx3d(hw); struct clk_hw *xo, *p0, *p1, *p2; unsigned long p0_rate; u8 mux_div = cgfx->div; int ret; p0 = cgfx->hws[0]; p1 = cgfx->hws[1]; p2 = cgfx->hws[2]; /* * This function does ping-pong the RCG between PLLs: if we don't * have at least one fixed PLL and two variable ones, * then it's not going to work correctly. */ if (WARN_ON(!p0 || !p1 || !p2)) return -EINVAL; xo = clk_hw_get_parent_by_index(hw, 0); if (!xo) return -EINVAL; if (req->rate == clk_hw_get_rate(xo)) { req->best_parent_hw = xo; return 0; } if (mux_div == 0) mux_div = 1; parent_req.rate = req->rate * mux_div; /* This has to be a fixed rate PLL */ p0_rate = clk_hw_get_rate(p0); if (parent_req.rate == p0_rate) { req->rate = req->best_parent_rate = p0_rate; req->best_parent_hw = p0; return 0; } if (req->best_parent_hw == p0) { /* Are we going back to a previously used rate? */ if (clk_hw_get_rate(p2) == parent_req.rate) req->best_parent_hw = p2; else req->best_parent_hw = p1; } else if (req->best_parent_hw == p2) { req->best_parent_hw = p1; } else { req->best_parent_hw = p2; } clk_hw_get_rate_range(req->best_parent_hw, &parent_req.min_rate, &parent_req.max_rate); if (req->min_rate > parent_req.min_rate) parent_req.min_rate = req->min_rate; if (req->max_rate < parent_req.max_rate) parent_req.max_rate = req->max_rate; ret = __clk_determine_rate(req->best_parent_hw, &parent_req); if (ret) return ret; req->rate = req->best_parent_rate = parent_req.rate; req->rate /= mux_div; return 0; } static int clk_gfx3d_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { struct clk_rcg2_gfx3d *cgfx = to_clk_rcg2_gfx3d(hw); struct clk_rcg2 *rcg = &cgfx->rcg; u32 cfg; int ret; cfg = rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT; /* On some targets, the GFX3D RCG may need to divide PLL frequency */ if (cgfx->div > 1) cfg |= ((2 * cgfx->div) - 1) << CFG_SRC_DIV_SHIFT; ret = regmap_write(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, cfg); if (ret) return ret; return update_config(rcg); } static int clk_gfx3d_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { /* * We should never get here; clk_gfx3d_determine_rate() should always * make us use a different parent than what we're currently using, so * clk_gfx3d_set_rate_and_parent() should always be called. */ return 0; } const struct clk_ops clk_gfx3d_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, .recalc_rate = clk_rcg2_recalc_rate, .set_rate = clk_gfx3d_set_rate, .set_rate_and_parent = clk_gfx3d_set_rate_and_parent, .determine_rate = clk_gfx3d_determine_rate, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_gfx3d_ops); static int clk_rcg2_shared_force_enable_clear(struct clk_hw *hw, const struct freq_tbl *f) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); int ret; ret = clk_rcg2_set_force_enable(hw); if (ret) return ret; ret = clk_rcg2_configure(rcg, f); if (ret) return ret; return clk_rcg2_clear_force_enable(hw); } static int clk_rcg2_shared_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); const struct freq_tbl *f; f = qcom_find_freq(rcg->freq_tbl, rate); if (!f) return -EINVAL; /* * In case clock is disabled, update the M, N and D registers, cache * the CFG value in parked_cfg and don't hit the update bit of CMD * register. */ if (!clk_hw_is_enabled(hw)) return __clk_rcg2_configure(rcg, f, &rcg->parked_cfg); return clk_rcg2_shared_force_enable_clear(hw, f); } static int clk_rcg2_shared_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { return clk_rcg2_shared_set_rate(hw, rate, parent_rate); } static int clk_rcg2_shared_enable(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); int ret; /* * Set the update bit because required configuration has already * been written in clk_rcg2_shared_set_rate() */ ret = clk_rcg2_set_force_enable(hw); if (ret) return ret; /* Write back the stored configuration corresponding to current rate */ ret = regmap_write(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, rcg->parked_cfg); if (ret) return ret; ret = update_config(rcg); if (ret) return ret; return clk_rcg2_clear_force_enable(hw); } static void clk_rcg2_shared_disable(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); /* * Store current configuration as switching to safe source would clear * the SRC and DIV of CFG register */ regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &rcg->parked_cfg); /* * Park the RCG at a safe configuration - sourced off of safe source. * Force enable and disable the RCG while configuring it to safeguard * against any update signal coming from the downstream clock. * The current parent is still prepared and enabled at this point, and * the safe source is always on while application processor subsystem * is online. Therefore, the RCG can safely switch its parent. */ clk_rcg2_set_force_enable(hw); regmap_write(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, rcg->safe_src_index << CFG_SRC_SEL_SHIFT); update_config(rcg); clk_rcg2_clear_force_enable(hw); } static u8 clk_rcg2_shared_get_parent(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); /* If the shared rcg is parked use the cached cfg instead */ if (!clk_hw_is_enabled(hw)) return __clk_rcg2_get_parent(hw, rcg->parked_cfg); return clk_rcg2_get_parent(hw); } static int clk_rcg2_shared_set_parent(struct clk_hw *hw, u8 index) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); /* If the shared rcg is parked only update the cached cfg */ if (!clk_hw_is_enabled(hw)) { rcg->parked_cfg &= ~CFG_SRC_SEL_MASK; rcg->parked_cfg |= rcg->parent_map[index].cfg << CFG_SRC_SEL_SHIFT; return 0; } return clk_rcg2_set_parent(hw, index); } static unsigned long clk_rcg2_shared_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); /* If the shared rcg is parked use the cached cfg instead */ if (!clk_hw_is_enabled(hw)) return __clk_rcg2_recalc_rate(hw, parent_rate, rcg->parked_cfg); return clk_rcg2_recalc_rate(hw, parent_rate); } const struct clk_ops clk_rcg2_shared_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .enable = clk_rcg2_shared_enable, .disable = clk_rcg2_shared_disable, .get_parent = clk_rcg2_shared_get_parent, .set_parent = clk_rcg2_shared_set_parent, .recalc_rate = clk_rcg2_shared_recalc_rate, .determine_rate = clk_rcg2_determine_rate, .set_rate = clk_rcg2_shared_set_rate, .set_rate_and_parent = clk_rcg2_shared_set_rate_and_parent, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_rcg2_shared_ops); /* Common APIs to be used for DFS based RCGR */ static int clk_rcg2_dfs_populate_freq(struct clk_hw *hw, unsigned int l, struct freq_tbl *f) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_hw *p; unsigned long prate = 0; u32 val, mask, cfg, mode, src; int i, num_parents; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_DFSR(l), &cfg); mask = BIT(rcg->hid_width) - 1; f->pre_div = 1; if (cfg & mask) f->pre_div = cfg & mask; src = cfg & CFG_SRC_SEL_MASK; src >>= CFG_SRC_SEL_SHIFT; num_parents = clk_hw_get_num_parents(hw); for (i = 0; i < num_parents; i++) { if (src == rcg->parent_map[i].cfg) { f->src = rcg->parent_map[i].src; p = clk_hw_get_parent_by_index(&rcg->clkr.hw, i); if (!p) return -EINVAL; prate = clk_hw_get_rate(p); } } mode = cfg & CFG_MODE_MASK; mode >>= CFG_MODE_SHIFT; if (mode) { mask = BIT(rcg->mnd_width) - 1; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_M_DFSR(l), &val); val &= mask; f->m = val; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_N_DFSR(l), &val); val = ~val; val &= mask; val += f->m; f->n = val; } f->freq = calc_rate(prate, f->m, f->n, mode, f->pre_div); return 0; } static int clk_rcg2_dfs_populate_freq_table(struct clk_rcg2 *rcg) { struct freq_tbl *freq_tbl; int i, ret; /* Allocate space for 1 extra since table is NULL terminated */ freq_tbl = kcalloc(MAX_PERF_LEVEL + 1, sizeof(*freq_tbl), GFP_KERNEL); if (!freq_tbl) return -ENOMEM; rcg->freq_tbl = freq_tbl; for (i = 0; i < MAX_PERF_LEVEL; i++) { ret = clk_rcg2_dfs_populate_freq(&rcg->clkr.hw, i, freq_tbl + i); if (ret) return ret; } return ret; } static int clk_rcg2_dfs_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); int ret; if (!rcg->freq_tbl) { ret = clk_rcg2_dfs_populate_freq_table(rcg); if (ret) { pr_err("Failed to update DFS tables for %s\n", clk_hw_get_name(hw)); return ret; } } return clk_rcg2_determine_rate(hw, req); } static unsigned long clk_rcg2_dfs_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); u32 level, mask, cfg, m = 0, n = 0, mode, pre_div; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_CMD_DFSR_OFFSET, &level); level &= GENMASK(4, 1); level >>= 1; if (rcg->freq_tbl) return rcg->freq_tbl[level].freq; /* * Assume that parent_rate is actually the parent because * we can't do any better at figuring it out when the table * hasn't been populated yet. We only populate the table * in determine_rate because we can't guarantee the parents * will be registered with the framework until then. */ regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_DFSR(level), &cfg); mask = BIT(rcg->hid_width) - 1; pre_div = 1; if (cfg & mask) pre_div = cfg & mask; mode = cfg & CFG_MODE_MASK; mode >>= CFG_MODE_SHIFT; if (mode) { mask = BIT(rcg->mnd_width) - 1; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_M_DFSR(level), &m); m &= mask; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + SE_PERF_N_DFSR(level), &n); n = ~n; n &= mask; n += m; } return calc_rate(parent_rate, m, n, mode, pre_div); } static const struct clk_ops clk_rcg2_dfs_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .determine_rate = clk_rcg2_dfs_determine_rate, .recalc_rate = clk_rcg2_dfs_recalc_rate, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; /* Common APIs to be used for CESTA based RCGR */ static int clk_rcg2_crm_err_dump(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; int ret; ret = crm_dump_regs(crm->name); if (ret) pr_err("%s %s failed ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret); return ret; } static int clk_rcg2_crmc_populate_freq(struct clk_hw *hw, unsigned int l, struct freq_tbl *f) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; struct clk_hw *p; unsigned long prate = 0; u32 mask, rcgr_cfg, src, pll_lval, lval, alpha_val, num_parents, i; u32 vcd = rcg->clkr.crm_vcd; if (!crm->regmap_crmc) { pr_err("%s crmc regmap error\n", __func__); return -ENODEV; } regmap_read(crm->regmap_crmc, CRMC_OFFS_CFG_RCGR(crm, vcd, l), &rcgr_cfg); regmap_read(crm->regmap_crmc, CRMC_OFFS_L_VAL(crm, vcd, l), &pll_lval); mask = BIT(rcg->hid_width) - 1; f->pre_div = 1; if (rcgr_cfg & mask) f->pre_div = rcgr_cfg & mask; src = rcgr_cfg & CFG_SRC_SEL_MASK; src >>= CFG_SRC_SEL_SHIFT; lval = pll_lval & PLL_L_VAL_MASK; alpha_val = (pll_lval & PLL_ALPHA_VAL_MASK) >> PLL_ALPHA_VAL_SHIFT; num_parents = clk_hw_get_num_parents(hw); for (i = 0; i < num_parents; i++) { if (src == rcg->parent_map[i].cfg) { f->src = rcg->parent_map[i].src; p = clk_hw_get_parent_by_index(&rcg->clkr.hw, i); if (!p) return -EINVAL; if (!lval) { prate = clk_hw_get_rate(p); } else if (clk_is_regmap_clk(p)) { struct clk_regmap *rclk = to_clk_regmap(p); if (rclk->ops && rclk->ops->calc_pll) prate = rclk->ops->calc_pll(p, lval, alpha_val); } break; } } if (!prate) { pr_err("%s error clk=%s\n", __func__, qcom_clk_hw_get_name(hw)); return -EINVAL; } f->freq = calc_rate(prate, 0, 0, 0, f->pre_div); return 0; } int clk_rcg2_crmc_populate_freq_table(struct clk_rcg2 *rcg) { struct freq_tbl *freq_tbl, *curr_freq_tbl; struct clk_crm *crm = rcg->clkr.crm; u32 prev_freq = 0; int i, ret; /* Allocate space for 1 extra since table is NULL terminated */ freq_tbl = kcalloc(crm->num_perf_ol + 1, sizeof(*freq_tbl), GFP_KERNEL); if (!freq_tbl) return -ENOMEM; rcg->freq_tbl = freq_tbl; /* * Skipping first LUT entry as first entry is used to disable RCG */ for (i = 0; i < crm->num_perf_ol; i++) { ret = clk_rcg2_crmc_populate_freq(&rcg->clkr.hw, i + 1, freq_tbl + i); if (ret) return ret; curr_freq_tbl = freq_tbl + i; /* * Two of the same/decreasing frequencies means end of LUT */ if (prev_freq >= curr_freq_tbl->freq) { curr_freq_tbl->freq = 0; break; } prev_freq = curr_freq_tbl->freq; } return 0; } static int clk_rcg2_crmc_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; int ret; ret = clk_runtime_get_regmap(&rcg->clkr); if (ret) return ret; ret = qcom_clk_crm_init(rcg->clkr.dev, crm); if (ret) { pr_err("%s Failed to initialize CRM ret=%d clk=%s\n", __func__, ret, qcom_clk_hw_get_name(hw)); goto err; } if (!rcg->freq_populated) { ret = clk_rcg2_crmc_populate_freq_table(rcg); if (ret) { pr_err("%s Failed to populate crmc tables for %s\n", __func__, qcom_clk_hw_get_name(hw)); goto err; } rcg->freq_populated = true; } ret = clk_rcg2_determine_rate(hw, req); err: clk_runtime_put_regmap(&rcg->clkr); return ret; } static int clk_rcg2_vote_perf_level(struct clk_hw *hw, unsigned long rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; struct crm_cmd cmd; int perf_index; int ret, i; if (!rcg->freq_tbl || !crm->initialized) { pr_err("%s rcg=%s rate=%ld\n", __func__, qcom_clk_hw_get_name(hw), rate); return -EINVAL; } perf_index = qcom_find_crm_freq_index(rcg->freq_tbl, rate); if (perf_index < 0 || perf_index >= crm->num_perf_ol) { pr_err("%s rcg name %s perf_index=%d\n", __func__, qcom_clk_hw_get_name(hw), perf_index); return -EINVAL; } cmd.data = perf_index; cmd.resource_idx = rcg->clkr.crm_vcd; cmd.wait = 1; for (i = 0; i < MAX_CRM_SW_DRV_STATE; i++) { cmd.pwr_state.sw = i; ret = crm_write_perf_ol(crm->dev, CRM_SW_DRV, 0, &cmd); if (ret) { pr_err("%s err write_perf_ol rcg name %s ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret); if (ret == -ETIMEDOUT) clk_rcg2_crm_err_dump(hw); } } return ret; } static int clk_rcg2_crmc_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); rcg->current_freq = rate; if (!clk_hw_is_prepared(hw)) return 0; return clk_rcg2_vote_perf_level(hw, rate); } /** * clk_rcg2_crmc_prepare() - cesta rcg/vcd prepare call back for cesta managed clks * * @hw: clk to operate on * * Vote clock by updating the perf_level to level required by * the current rate of the clock if it hasn't been initialized before. * Vdd_level and level required by current clock rate mismatches can * occur due to error cases and upon initial clock registration * if the clock becomes an orphan and is later reparented. * * Returns 0 on success, -EERROR otherwise. */ int clk_rcg2_crmc_prepare(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); if (!rcg->current_freq) rcg->current_freq = cxo_f.freq; return clk_rcg2_vote_perf_level(hw, rcg->current_freq); } /** * clk_rcg2_crmc_unprepare() - standard prepare call back for regmap clks * * @hw: clk to operate on * * Unprepare the clock by removing the outstanding perf_level vote. * */ void clk_rcg2_crmc_unprepare(struct clk_hw *hw) { int ret; /* * Cesta will park RCG at a safe configuration that is CP0 perf level */ ret = clk_rcg2_vote_perf_level(hw, 0); if (ret) pr_err("%s rcg name=%s ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret); } unsigned long clk_rcg2_crmc_hw_set_rate(struct clk_hw *hw, enum crm_drv_type client_type, u32 client_idx, u32 pwr_st, unsigned long rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; struct crm_cmd cmd; int ret, perf_index; perf_index = qcom_find_crm_freq_index(rcg->freq_tbl, rate); if (perf_index < 0 || perf_index >= crm->num_perf_ol) { pr_err("%s rcg name %s perf_index=%d\n", __func__, qcom_clk_hw_get_name(hw), perf_index); return -EINVAL; } cmd.resource_idx = rcg->clkr.crm_vcd; cmd.data = perf_index; cmd.wait = 1; cmd.pwr_state.hw = pwr_st; ret = crm_write_perf_ol(crm->dev, client_type, client_idx, &cmd); if (ret) { pr_err("%s err write_perf_ol rcg name %s ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret); if (ret == -ETIMEDOUT) clk_rcg2_crm_err_dump(hw); } return ret; } static struct clk_regmap_ops clk_rcg2_crmc_regmap_ops = { .set_crm_rate = clk_rcg2_crmc_hw_set_rate, .list_rate = clk_rcg2_list_rate, .list_registers = clk_rcg2_list_registers, }; static int clk_rcg2_crmc_init(struct clk_hw *hw) { struct clk_regmap *rclk = to_clk_regmap(hw); if (!rclk->ops) rclk->ops = &clk_rcg2_crmc_regmap_ops; return 0; } static unsigned long clk_rcg2_crmc_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); /* * CRM-controlled clocks have multiple SW and HW voters. We need to * return the Linux SW vote instead of the current HW rate. The HW rate * is a result of aggregating across all clients. If we return the * aggregated rate, then subsequent clk_set_rate() calls can * short-circuit before calling our set_rate() callback, even if we * haven't sent a vote for that new rate on behalf of our SW client * yet. Failing to do so can result in the clock frequency dropping * below the rate expected by the framework and consumer. */ return rcg->current_freq; } const struct clk_ops clk_rcg2_crmc_ops = { .prepare = clk_rcg2_crmc_prepare, .unprepare = clk_rcg2_crmc_unprepare, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .set_rate = clk_rcg2_crmc_set_rate, .determine_rate = clk_rcg2_crmc_determine_rate, .recalc_rate = clk_rcg2_crmc_recalc_rate, .init = clk_rcg2_crmc_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL(clk_rcg2_crmc_ops); static int clk_rcg2_vote_bw(struct clk_hw *hw, unsigned long rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; struct crm_cmd cmd = {0}; int ret, i; if (rate) rate /= 1000000; cmd.resource_idx = 0; cmd.wait = 1; cmd.data = BCM_TCS_CMD(1, 1, 0, rate); for (i = 0; i < MAX_CRM_SW_DRV_STATE; i++) { cmd.pwr_state.sw = i; ret = crm_write_bw_vote(crm->dev, CRM_SW_DRV, 0, &cmd); if (ret) { pr_err("%s err crm_write_bw_vote rcg name %s ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret); if (ret == -ETIMEDOUT) clk_rcg2_crm_err_dump(hw); } } return ret; } /** * clk_rcg2_crmb_prepare() - cesta rcg/vcd prepare call back for cesta managed clks * * @hw: clk to operate on * * Vote clock by updating the perf_level to level required by * the current rate of the clock if it hasn't been initialized before. * Vdd_level and level required by current clock rate mismatches can * occur due to error cases and upon initial clock registration * if the clock becomes an orphan and is later reparented. * * Returns 0 on success, -EERROR otherwise. */ int clk_rcg2_crmb_prepare(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; if (!rcg->freq_tbl || !crm->initialized) return 0; return clk_rcg2_vote_bw(hw, rcg->current_freq); } /** * clk_rcg2_crmb_unprepare() - standard prepare call back for regmap clks * * @hw: clk to operate on * * Unprepare the clock by removing the outstanding perf_level vote. * */ void clk_rcg2_crmb_unprepare(struct clk_hw *hw) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; int ret; if (!rcg->freq_tbl || !crm->initialized) return; /* * Cesta will park RCG at a safe configuration that is CP0 perf level */ ret = clk_rcg2_vote_bw(hw, 0); if (ret) pr_err("%s clk_rcg2_vote_bw rcg name %s ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret); } static int clk_rcg2_crmb_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; int ret; rcg->current_freq = rate; if (!clk_hw_is_prepared(hw)) return 0; if (rcg->freq_tbl && crm->initialized) { ret = clk_rcg2_vote_bw(hw, rate); if (ret) pr_err("%s clk_rcg2_vote_bw rcg name %s ret=%d\n", __func__, qcom_clk_hw_get_name(hw), ret); return ret; } return -EINVAL; } unsigned long clk_rcg2_crmb_set_crmb_rate(struct clk_hw *hw, enum crm_drv_type client_type, u32 client_idx, u32 nd_idx, u32 pwr_st, u32 ab_rate, u32 ib_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct clk_crm *crm = rcg->clkr.crm; struct crm_cmd cmd = {0}; int ret; ab_rate /= 1000000; ib_rate /= 1000000; if (nd_idx >= rcg->clkr.crm_num_node) return -EINVAL; cmd.resource_idx = rcg->clkr.crm_base_node + nd_idx; cmd.pwr_state.hw = pwr_st; cmd.wait = 1; cmd.data = BCM_TCS_CMD(1, 1, ab_rate, ib_rate); ret = crm_write_bw_vote(crm->dev, client_type, client_idx, &cmd); if (ret) { pr_err("%s err rcg name %s cmd.data=0x%x ret=%d\n", __func__, qcom_clk_hw_get_name(hw), cmd.data, ret); if (ret == -ETIMEDOUT) clk_rcg2_crm_err_dump(hw); } return ret; } unsigned long clk_rcg2_crmb_set_crm_rate(struct clk_hw *hw, enum crm_drv_type client_type, u32 client_idx, u32 pwr_st, unsigned long rate) { return clk_rcg2_crmb_set_crmb_rate(hw, client_type, client_idx, 0, pwr_st, rate, 0); } static struct clk_regmap_ops clk_rcg2_crmb_regmap_ops = { .set_crm_rate = clk_rcg2_crmb_set_crm_rate, .set_crmb_rate = clk_rcg2_crmb_set_crmb_rate, .list_rate = clk_rcg2_list_rate, .list_registers = clk_rcg2_list_registers, }; static int clk_rcg2_crmb_init(struct clk_hw *hw) { struct clk_regmap *rclk = to_clk_regmap(hw); if (!rclk->ops) rclk->ops = &clk_rcg2_crmb_regmap_ops; return 0; } const struct clk_ops clk_rcg2_crmb_ops = { .prepare = clk_rcg2_crmb_prepare, .unprepare = clk_rcg2_crmb_unprepare, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .set_rate = clk_rcg2_crmb_set_rate, .determine_rate = clk_rcg2_crmc_determine_rate, .recalc_rate = clk_rcg2_crmc_recalc_rate, .init = clk_rcg2_crmb_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL(clk_rcg2_crmb_ops); static int clk_rcg2_enable_dfs(const struct clk_rcg_dfs_data *data, struct regmap *regmap) { struct clk_rcg2 *rcg = data->rcg; struct clk_init_data *init = data->init; u32 val; int ret; rcg->flags |= DFS_SUPPORT; ret = regmap_read(regmap, rcg->cmd_rcgr + SE_CMD_DFSR_OFFSET, &val); if (ret) return -EINVAL; if (!(val & SE_CMD_DFS_EN)) return 0; /* * Rate changes with consumer writing a register in * their own I/O region */ init->flags |= CLK_GET_RATE_NOCACHE; init->ops = &clk_rcg2_dfs_ops; rcg->freq_tbl = NULL; return 0; } int qcom_cc_register_rcg_dfs(struct regmap *regmap, const struct clk_rcg_dfs_data *rcgs, size_t len) { int i, ret; for (i = 0; i < len; i++) { ret = clk_rcg2_enable_dfs(&rcgs[i], regmap); if (ret) return ret; } return 0; } EXPORT_SYMBOL_GPL(qcom_cc_register_rcg_dfs); static int clk_rcg2_dp_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); struct freq_tbl f = { 0 }; u32 mask = BIT(rcg->hid_width) - 1; u32 hid_div, cfg; int i, num_parents = clk_hw_get_num_parents(hw); unsigned long num, den; rational_best_approximation(parent_rate, rate, GENMASK(rcg->mnd_width - 1, 0), GENMASK(rcg->mnd_width - 1, 0), &den, &num); if (!num || !den) return -EINVAL; regmap_read(rcg->clkr.regmap, rcg->cmd_rcgr + CFG_REG, &cfg); hid_div = cfg; cfg &= CFG_SRC_SEL_MASK; cfg >>= CFG_SRC_SEL_SHIFT; for (i = 0; i < num_parents; i++) { if (cfg == rcg->parent_map[i].cfg) { f.src = rcg->parent_map[i].src; break; } } f.pre_div = hid_div; f.pre_div >>= CFG_SRC_DIV_SHIFT; f.pre_div &= mask; if (num != den) { f.m = num; f.n = den; } else { f.m = 0; f.n = 0; } return clk_rcg2_configure(rcg, &f); } static int clk_rcg2_dp_set_rate_and_parent(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index) { return clk_rcg2_dp_set_rate(hw, rate, parent_rate); } static int clk_rcg2_dp_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_rcg2 *rcg = to_clk_rcg2(hw); unsigned long num, den; u64 tmp; /* Parent rate is a fixed phy link rate */ rational_best_approximation(req->best_parent_rate, req->rate, GENMASK(rcg->mnd_width - 1, 0), GENMASK(rcg->mnd_width - 1, 0), &den, &num); if (!num || !den) return -EINVAL; tmp = req->best_parent_rate * num; do_div(tmp, den); req->rate = tmp; return 0; } const struct clk_ops clk_dp_ops = { .prepare = clk_prepare_regmap, .unprepare = clk_unprepare_regmap, .pre_rate_change = clk_pre_change_regmap, .post_rate_change = clk_post_change_regmap, .is_enabled = clk_rcg2_is_enabled, .get_parent = clk_rcg2_get_parent, .set_parent = clk_rcg2_set_parent, .recalc_rate = clk_rcg2_recalc_rate, .set_rate = clk_rcg2_dp_set_rate, .set_rate_and_parent = clk_rcg2_dp_set_rate_and_parent, .determine_rate = clk_rcg2_dp_determine_rate, .init = clk_rcg2_init, .debug_init = clk_common_debug_init, }; EXPORT_SYMBOL_GPL(clk_dp_ops);