Files
android_kernel_samsung_sm8750/drivers/regulator/qcom-amoled-regulator.c
2025-08-12 22:16:57 +02:00

977 lines
23 KiB
C
Executable File

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
* Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#define pr_fmt(fmt) "AMOLED: %s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/debug-regulator.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/machine.h>
/* Register definitions */
#define PERIPH_REVISION4 0x03
#define IBB_PERIPH_TYPE 0x20
#define AB_PERIPH_TYPE 0x24
#define OLEDB_PERIPH_TYPE 0x2C
#define PERIPH_SUBTYPE 0x05
/* AB */
#define PMD802X_AB_PULL_DOWN_CTL(chip) (chip->ab_base + 0x47)
#define PM8350B_AB_LDO_PD_CTL(chip) (chip->ab_base + 0x78)
/* PM8350B_AB_LDO_PD_CTL */
#define PM8350B_AB_PULLDN_EN_BIT BIT(7)
/* PMD802X_AB_PULL_DOWN_CTL */
#define PMD802X_AB_PULLDN_EN_BIT BIT(1)
#define PMD802X_AB_PULLDN_STRENGTH_BIT BIT(0)
#define PMD802X_AB_PULLDN_STRENGTH_STRONG 1
/* IBB */
#define IBB_PD_CTL(chip) (chip->ibb_base + 0x47)
/* IBB_PD_CTL */
#define ENABLE_PD_BIT BIT(7)
#define IBB_DUAL_PHASE_CTL(chip) (chip->ibb_base + 0x70)
/* IBB_DUAL_PHASE_CTL */
#define IBB_DUAL_PHASE_CTL_MASK GENMASK(2, 0)
#define AUTO_DUAL_PHASE_BIT BIT(2)
#define FORCE_DUAL_PHASE_BIT BIT(1)
#define FORCE_SINGLE_PHASE_BIT BIT(0)
/* IBB SPUR FSM/SQM CTL */
#define IBB_SPUR_CTL(chip) (chip->ibb_base + 0xB6)
#define SPUR_FSM_EN BIT(7)
#define SPUR_SQM_EN BIT(6)
#define IBB_SPUR_FREQ_CTL(chip) (chip->ibb_base + 0xB7)
#define FREQ_RES_SEL BIT(0)
#define IBB_SPUR_FREQ_THRESH_HIGH(i) (chip->ibb_base + 0xB8 + i*2)
#define IBB_SPUR_FREQ_THRESH_LOW(i) (chip->ibb_base + 0xB9 + i*2)
#define MAX_SPUR_FREQ_BANDS 3
#define MAX_SPUR_FREQ_KHZ 248
#define AMOLED_SDAM_OFFSET 0xB8
#define SQM_TIMER_LOWER_LIMIT_MS 100
#define SQM_TIMER_UPPER_LIMIT_MS 10000
enum {
SPUR_MITIGATION_DISABLED,
SPUR_MITIGATION_ENABLED_WITHOUT_SQM,
SPUR_MITIGATION_ENABLED_WITH_SQM,
};
struct amoled_regulator {
struct regulator_desc rdesc;
struct regulator_dev *rdev;
struct device_node *node;
unsigned int mode;
bool enabled;
};
struct oledb_regulator {
struct amoled_regulator vreg;
/* DT params */
bool swire_control;
};
struct ab_regulator {
struct amoled_regulator vreg;
u8 subtype;
/* DT params */
bool swire_control;
bool pd_control;
};
struct ibb_regulator {
struct amoled_regulator vreg;
u8 subtype;
u8 rev4;
/* DT params */
bool swire_control;
bool pd_control;
bool single_phase;
/* ibb_spur_mitigation params */
u32 spur_mitigation_level;
u32 spur_sqm_timer_ms;
u32 spur_freq_thresh_high[MAX_SPUR_FREQ_BANDS];
u32 spur_freq_thresh_low[MAX_SPUR_FREQ_BANDS];
bool spur_freq_res_sel;
};
struct amoled_chip {
struct device *dev;
struct regmap *regmap;
struct oledb_regulator oledb;
struct ab_regulator ab;
struct ibb_regulator ibb;
struct nvmem_cell *nvmem_cell;
/* DT params */
u32 oledb_base;
u32 ab_base;
u32 ibb_base;
};
enum reg_type {
OLEDB,
AB,
IBB,
};
enum ab_subtype {
PM8350B_AB = 0x06,
PMD802X_AB = 0x07,
};
enum ibb_subtype {
PM8150A_IBB = 0x03,
PM8350B_IBB = 0x04,
PMD802X_IBB = 0x05,
};
enum ibb_rev4 {
IBB_ANA_MAJOR_V1 = 0x01,
IBB_ANA_MAJOR_V2 = 0x02,
};
static inline bool is_spur_mitigation_supported(struct ibb_regulator *ibb)
{
switch (ibb->subtype) {
case PMD802X_IBB:
return true;
case PM8350B_IBB:
if (ibb->rev4 >= IBB_ANA_MAJOR_V2)
return true;
fallthrough;
default:
return false;
}
}
static inline bool is_phase_ctrl_supported(struct ibb_regulator *ibb)
{
if (ibb->subtype == PM8350B_IBB)
return true;
return false;
}
static int amoled_read(struct amoled_chip *chip,
u16 addr, u8 *value, u8 count)
{
int rc = 0;
rc = regmap_bulk_read(chip->regmap, addr, value, count);
if (rc < 0)
pr_err("Failed to read from addr=0x%02x rc=%d\n", addr, rc);
return rc;
}
static int amoled_write(struct amoled_chip *chip,
u16 addr, u8 *value, u8 count)
{
int rc;
rc = regmap_bulk_write(chip->regmap, addr, value, count);
if (rc < 0)
pr_err("Failed to write to addr=0x%02x rc=%d\n", addr, rc);
return rc;
}
static int amoled_masked_write(struct amoled_chip *chip,
u16 addr, u8 mask, u8 value)
{
int rc = 0;
rc = regmap_update_bits(chip->regmap, addr, mask, value);
if (rc < 0)
pr_err("Failed to write addr=0x%02x value=0x%02x rc=%d\n",
addr, value, rc);
return rc;
}
/* AB regulator */
static int amoled_ab_regulator_is_enabled(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
return chip->ab.vreg.enabled;
}
static int amoled_ab_regulator_enable(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
chip->ab.vreg.enabled = true;
return 0;
}
static int amoled_ab_regulator_disable(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
chip->ab.vreg.enabled = false;
return 0;
}
/* IBB regulator */
static int amoled_ibb_regulator_is_enabled(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
return chip->ibb.vreg.enabled;
}
static int amoled_ibb_regulator_enable(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
chip->ibb.vreg.enabled = true;
return 0;
}
static int amoled_ibb_regulator_disable(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
chip->ibb.vreg.enabled = false;
return 0;
}
/* common to AB and IBB */
static int amoled_ab_ibb_regulator_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned int *selector)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
/* HW controlled */
if (chip->ab.swire_control || chip->ibb.swire_control)
return 0;
return 0;
}
static int amoled_ab_ibb_regulator_get_voltage(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
/* HW controlled */
if (chip->ab.swire_control || chip->ibb.swire_control)
return 0;
return 0;
}
static int amoled_ab_pd_control(struct amoled_chip *chip, bool en)
{
u8 val, mask;
u16 addr;
if (!chip->ab.pd_control)
return 0;
if (chip->ab.subtype == PM8350B_AB) {
addr = PM8350B_AB_LDO_PD_CTL(chip);
val = en ? PM8350B_AB_PULLDN_EN_BIT : 0;
mask = PM8350B_AB_PULLDN_EN_BIT;
} else if (chip->ab.subtype == PMD802X_AB) {
addr = PMD802X_AB_PULL_DOWN_CTL(chip);
val = en ? PMD802X_AB_PULLDN_EN_BIT |
PMD802X_AB_PULLDN_STRENGTH_STRONG : 0;
mask = PMD802X_AB_PULLDN_EN_BIT |
PMD802X_AB_PULLDN_STRENGTH_BIT;
} else {
return -EINVAL;
}
return amoled_masked_write(chip, addr, mask, val);
}
static int amoled_ibb_pd_control(struct amoled_chip *chip, bool en)
{
u8 val = en ? ENABLE_PD_BIT : 0;
if (!chip->ibb.pd_control)
return 0;
return amoled_masked_write(chip, IBB_PD_CTL(chip), ENABLE_PD_BIT,
val);
}
static int amoled_ab_ibb_regulator_set_mode(struct regulator_dev *rdev,
unsigned int mode)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
int rc = 0;
if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_STANDBY &&
mode != REGULATOR_MODE_IDLE) {
pr_err("Unsupported mode %u\n", mode);
return -EINVAL;
}
if (mode == chip->ab.vreg.mode || mode == chip->ibb.vreg.mode)
return 0;
pr_debug("mode: %d\n", mode);
if (mode == REGULATOR_MODE_NORMAL || mode == REGULATOR_MODE_STANDBY) {
rc = amoled_ibb_pd_control(chip, true);
if (rc < 0)
goto error;
rc = amoled_ab_pd_control(chip, true);
if (rc < 0)
goto error;
} else if (mode == REGULATOR_MODE_IDLE) {
rc = amoled_ibb_pd_control(chip, false);
if (rc < 0)
goto error;
rc = amoled_ab_pd_control(chip, false);
if (rc < 0)
goto error;
}
chip->ab.vreg.mode = chip->ibb.vreg.mode = mode;
error:
if (rc < 0)
pr_err("Failed to configure for mode %d\n", mode);
return rc;
}
static unsigned int amoled_ab_ibb_regulator_get_mode(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
return chip->ibb.vreg.mode;
}
#define SINGLE_PHASE_ILIMIT_UA 30000
static int amoled_ibb_regulator_set_load(struct regulator_dev *rdev,
int load_uA)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
u8 ibb_phase;
if (!is_phase_ctrl_supported(&chip->ibb))
return 0;
/* For IBB single phase, it's configured only once. */
if (chip->ibb.single_phase)
return 0;
if (load_uA < 0)
return -EINVAL;
else if (load_uA <= SINGLE_PHASE_ILIMIT_UA)
ibb_phase = AUTO_DUAL_PHASE_BIT;
else
ibb_phase = FORCE_DUAL_PHASE_BIT;
return amoled_masked_write(chip, IBB_DUAL_PHASE_CTL(chip),
IBB_DUAL_PHASE_CTL_MASK, ibb_phase);
}
static const struct regulator_ops amoled_ab_ops = {
.enable = amoled_ab_regulator_enable,
.disable = amoled_ab_regulator_disable,
.is_enabled = amoled_ab_regulator_is_enabled,
.set_voltage = amoled_ab_ibb_regulator_set_voltage,
.get_voltage = amoled_ab_ibb_regulator_get_voltage,
.set_mode = amoled_ab_ibb_regulator_set_mode,
.get_mode = amoled_ab_ibb_regulator_get_mode,
};
static const struct regulator_ops amoled_ibb_ops = {
.enable = amoled_ibb_regulator_enable,
.disable = amoled_ibb_regulator_disable,
.is_enabled = amoled_ibb_regulator_is_enabled,
.set_voltage = amoled_ab_ibb_regulator_set_voltage,
.get_voltage = amoled_ab_ibb_regulator_get_voltage,
.set_mode = amoled_ab_ibb_regulator_set_mode,
.get_mode = amoled_ab_ibb_regulator_get_mode,
.set_load = amoled_ibb_regulator_set_load,
};
/* OLEDB regulator */
static int amoled_oledb_regulator_is_enabled(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
return chip->oledb.vreg.enabled;
}
static int amoled_oledb_regulator_enable(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
chip->oledb.vreg.enabled = true;
return 0;
}
static int amoled_oledb_regulator_disable(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
chip->oledb.vreg.enabled = false;
return 0;
}
static int amoled_oledb_regulator_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned int *selector)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
/* HW controlled */
if (chip->oledb.swire_control)
return 0;
return 0;
}
static int amoled_oledb_regulator_get_voltage(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
/* HW controlled */
if (chip->oledb.swire_control)
return 0;
return 0;
}
static int amoled_oledb_regulator_set_mode(struct regulator_dev *rdev,
unsigned int mode)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
chip->oledb.vreg.mode = mode;
return 0;
}
static unsigned int amoled_oledb_regulator_get_mode(struct regulator_dev *rdev)
{
struct amoled_chip *chip = rdev_get_drvdata(rdev);
return chip->oledb.vreg.mode;
}
static const struct regulator_ops amoled_oledb_ops = {
.enable = amoled_oledb_regulator_enable,
.disable = amoled_oledb_regulator_disable,
.is_enabled = amoled_oledb_regulator_is_enabled,
.set_voltage = amoled_oledb_regulator_set_voltage,
.get_voltage = amoled_oledb_regulator_get_voltage,
.set_mode = amoled_oledb_regulator_set_mode,
.get_mode = amoled_oledb_regulator_get_mode,
};
static int amoled_regulator_register(struct amoled_chip *chip,
enum reg_type type)
{
int rc = 0;
struct regulator_init_data *init_data;
struct regulator_config cfg = {};
struct regulator_desc *rdesc;
struct regulator_dev *rdev;
struct device_node *node;
if (type == OLEDB) {
node = chip->oledb.vreg.node;
rdesc = &chip->oledb.vreg.rdesc;
rdesc->ops = &amoled_oledb_ops;
rdev = chip->oledb.vreg.rdev;
} else if (type == AB) {
node = chip->ab.vreg.node;
rdesc = &chip->ab.vreg.rdesc;
rdesc->ops = &amoled_ab_ops;
rdev = chip->ab.vreg.rdev;
} else if (type == IBB) {
node = chip->ibb.vreg.node;
rdesc = &chip->ibb.vreg.rdesc;
rdesc->ops = &amoled_ibb_ops;
rdev = chip->ibb.vreg.rdev;
} else {
pr_err("Invalid regulator type %d\n", type);
return -EINVAL;
}
init_data = of_get_regulator_init_data(chip->dev, node, rdesc);
if (!init_data) {
pr_err("Failed to get regulator_init_data for type %d\n", type);
return -ENOMEM;
}
if (init_data->constraints.name) {
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
rdesc->name = init_data->constraints.name;
cfg.dev = chip->dev;
cfg.init_data = init_data;
cfg.driver_data = chip;
cfg.of_node = node;
if (of_get_property(chip->dev->of_node, "parent-supply",
NULL))
init_data->supply_regulator = "parent";
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE
| REGULATOR_CHANGE_STATUS
| REGULATOR_CHANGE_MODE;
init_data->constraints.valid_modes_mask
|= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE
| REGULATOR_MODE_STANDBY;
rdev = devm_regulator_register(chip->dev, rdesc, &cfg);
if (IS_ERR(rdev)) {
rc = PTR_ERR(rdev);
rdev = NULL;
pr_err("Failed to register amoled regulator for type %d rc = %d\n",
type, rc);
return rc;
}
rc = devm_regulator_debug_register(chip->dev, rdev);
if (rc) {
pr_err("failed to register debug regulator rc=%d\n",
rc);
rc = 0;
}
if (type == OLEDB)
chip->oledb.vreg.mode = REGULATOR_MODE_NORMAL;
else if (type == IBB)
chip->ibb.vreg.mode = REGULATOR_MODE_NORMAL;
else
chip->ab.vreg.mode = REGULATOR_MODE_NORMAL;
} else {
pr_err("regulator name missing for type %d\n", type);
return -EINVAL;
}
return rc;
}
static int amoled_hw_init(struct amoled_chip *chip)
{
int rc;
u8 val;
rc = amoled_regulator_register(chip, OLEDB);
if (rc < 0) {
dev_err(chip->dev, "Failed to register OLEDB regulator rc=%d\n",
rc);
return rc;
}
rc = amoled_regulator_register(chip, AB);
if (rc < 0) {
dev_err(chip->dev, "Failed to register AB regulator rc=%d\n",
rc);
return rc;
}
rc = amoled_regulator_register(chip, IBB);
if (rc < 0) {
dev_err(chip->dev, "Failed to register IBB regulator rc=%d\n",
rc);
return rc;
}
if (is_phase_ctrl_supported(&chip->ibb) && chip->ibb.single_phase) {
val = FORCE_SINGLE_PHASE_BIT;
rc = amoled_masked_write(chip, IBB_DUAL_PHASE_CTL(chip),
IBB_DUAL_PHASE_CTL_MASK, val);
if (rc < 0)
return rc;
}
return 0;
}
static int amoled_ibb_spur_parse_dt(struct amoled_chip *chip, struct device_node *node)
{
int freq_array_len, rc, i;
u32 spur_thres[2*MAX_SPUR_FREQ_BANDS];
rc = of_property_read_u32(node,
"qcom,ibb-spur-mitigation-level",
&chip->ibb.spur_mitigation_level);
if (rc < 0 || (chip->ibb.spur_mitigation_level == SPUR_MITIGATION_DISABLED)) {
dev_dbg(chip->dev, "ibb spur mitigation DISABLED!");
return rc;
}
if (chip->ibb.spur_mitigation_level == SPUR_MITIGATION_ENABLED_WITH_SQM) {
of_property_read_u32(node, "qcom,ibb-spur-sqm-timer-ms",
&chip->ibb.spur_sqm_timer_ms);
chip->nvmem_cell = devm_nvmem_cell_get(chip->dev,
"ibb_spur_sqm_timer");
if (IS_ERR(chip->nvmem_cell)) {
rc = PTR_ERR(chip->nvmem_cell);
if (rc != -EPROBE_DEFER)
dev_err(chip->dev, "Failed to get nvmem-cells, rc=%d\n", rc);
return rc;
}
}
/*
* Read the step size - 1khz or 2khz.
*
* NOTE: Even if this is not defined, step size may still be
* set to 2khz indirectly, if any freq1/2/3 thresh limit
* is in range: 248khz < f < 496khz.
*/
chip->ibb.spur_freq_res_sel = of_property_read_bool(node,
"qcom,ibb-spur-2khz-step-size");
freq_array_len = of_property_count_elems_of_size(node,
"qcom,ibb-spur-freq-thresholds", sizeof(u32));
if (freq_array_len != 2*MAX_SPUR_FREQ_BANDS) {
dev_err(chip->dev, "invalid ibb spur freq threshold array size = %d\n",
freq_array_len);
chip->ibb.spur_mitigation_level = SPUR_MITIGATION_DISABLED;
return -EINVAL;
}
rc = of_property_read_u32_array(node,
"qcom,ibb-spur-freq-thresholds", spur_thres, freq_array_len);
if (rc < 0) {
dev_err(chip->dev, "failed to read thresholds = %d\n", rc);
return rc;
}
for (i = 0; i < MAX_SPUR_FREQ_BANDS; i++) {
chip->ibb.spur_freq_thresh_low[i] = spur_thres[2*i];
chip->ibb.spur_freq_thresh_high[i] = spur_thres[(2*i)+1];
}
return rc;
}
static int amoled_parse_dt(struct amoled_chip *chip)
{
struct device_node *temp, *node = chip->dev->of_node;
const __be32 *prop_addr;
int rc = 0;
u32 base;
u8 val[3];
for_each_available_child_of_node(node, temp) {
prop_addr = of_get_address(temp, 0, NULL, NULL);
if (!prop_addr) {
pr_err("Couldn't get reg address\n");
return -EINVAL;
}
base = be32_to_cpu(*prop_addr);
rc = amoled_read(chip, base + PERIPH_REVISION4, val, 3);
if (rc < 0) {
pr_err("Couldn't read PERIPH_REVISION4 for base %x\n", base);
return rc;
}
switch (val[1]) {
case OLEDB_PERIPH_TYPE:
chip->oledb_base = base;
chip->oledb.vreg.node = temp;
chip->oledb.swire_control = of_property_read_bool(temp,
"qcom,swire-control");
break;
case AB_PERIPH_TYPE:
chip->ab_base = base;
chip->ab.subtype = val[2];
chip->ab.vreg.node = temp;
chip->ab.swire_control = of_property_read_bool(temp,
"qcom,swire-control");
chip->ab.pd_control = of_property_read_bool(temp,
"qcom,aod-pd-control");
break;
case IBB_PERIPH_TYPE:
chip->ibb_base = base;
chip->ibb.subtype = val[2];
chip->ibb.rev4 = val[0];
chip->ibb.vreg.node = temp;
chip->ibb.swire_control = of_property_read_bool(temp,
"qcom,swire-control");
chip->ibb.pd_control = of_property_read_bool(temp,
"qcom,aod-pd-control");
chip->ibb.single_phase = of_property_read_bool(temp,
"qcom,ibb-single-phase");
if (is_spur_mitigation_supported(&chip->ibb)) {
rc = amoled_ibb_spur_parse_dt(chip, temp);
if (rc < 0)
pr_err("Failed to parse ibb_spur_parse_dt\n");
}
break;
default:
pr_err("Unknown peripheral type 0x%x\n", val[0]);
return -EINVAL;
}
}
return 0;
}
static bool is_2khz_step_needed(struct amoled_chip *chip)
{
u8 i;
/*
* If any of the freq1/2/3 band has valid thresh
* (i.e f_high >= f_low)
* and freq values is in range of 248khz < f < 496khz
* then use step_size = 2khz
*/
for (i = 0; i < MAX_SPUR_FREQ_BANDS; i++) {
if ((chip->ibb.spur_freq_thresh_high[i] > MAX_SPUR_FREQ_KHZ) &&
(chip->ibb.spur_freq_thresh_high[i] < MAX_SPUR_FREQ_KHZ * 2) &&
(chip->ibb.spur_freq_thresh_high[i] >=
chip->ibb.spur_freq_thresh_low[i])) {
return true;
}
}
return false;
}
static int amoled_ibb_spur_set_thresh(struct amoled_chip *chip)
{
int i = 0, rc = 0;
u16 low, high, max, temp = 0;
if (!chip->ibb.spur_freq_res_sel)
chip->ibb.spur_freq_res_sel = is_2khz_step_needed(chip);
rc = amoled_masked_write(chip,
IBB_SPUR_FREQ_CTL(chip),
FREQ_RES_SEL,
(chip->ibb.spur_freq_res_sel ? FREQ_RES_SEL : 0));
if (rc < 0) {
dev_err(chip->dev, "failed to write IBB_SPUR_CTL register!\n");
return rc;
}
/* Calculate max based on the step size */
max = MAX_SPUR_FREQ_KHZ * (chip->ibb.spur_freq_res_sel ? 2 : 1);
for (i = 0; i < MAX_SPUR_FREQ_BANDS; i++) {
low = chip->ibb.spur_freq_thresh_low[i];
high = chip->ibb.spur_freq_thresh_high[i];
if (high < low || low > max || high > max) {
dev_err(chip->dev, "ibb spur freq band%d threshold invalid!\n",
(i+1));
/* Set both thresholds to max to in effect disable it */
chip->ibb.spur_freq_thresh_high[i] = max;
chip->ibb.spur_freq_thresh_low[i] = max;
low = max;
high = max;
}
/*
*For High threshold, roundoff-to-ceiling for odd frequency
* with 2khz step
*/
temp = high / (chip->ibb.spur_freq_res_sel ? 2 : 1);
temp += chip->ibb.spur_freq_res_sel ? (high % 2) : 0;
rc = amoled_write(chip, IBB_SPUR_FREQ_THRESH_HIGH(i),
(u8 *)&temp, 1);
if (rc < 0) {
dev_err(chip->dev, "failed to write IBB_SPUR_FREQ_HIGH register!\n");
return rc;
}
/*
* For Low threshold, roundoff-to-floor for odd frequency
* with 2khz step
*/
temp = low / (chip->ibb.spur_freq_res_sel ? 2 : 1);
rc = amoled_write(chip, IBB_SPUR_FREQ_THRESH_LOW(i),
(u8 *)&temp, 1);
if (rc < 0) {
dev_err(chip->dev, "failed to write IBB_SPUR_FREQ_LOW register!\n");
return rc;
}
}
return 0;
}
static int amoled_ibb_spur_set_sqm_timer(struct amoled_chip *chip, u16 sqm_timer)
{
return nvmem_cell_write(chip->nvmem_cell,
&sqm_timer,
sizeof(sqm_timer));
}
static int amoled_ibb_spur_init(struct amoled_chip *chip)
{
int rc = 0;
switch (chip->ibb.spur_mitigation_level) {
case SPUR_MITIGATION_ENABLED_WITH_SQM:
/*set SQM mode */
rc = amoled_masked_write(chip, IBB_SPUR_CTL(chip),
SPUR_SQM_EN,
SPUR_SQM_EN);
if (rc < 0) {
dev_err(chip->dev, "failed to enable spur SQM mode!\n");
return rc;
}
/*set SQM timer if defined */
if (chip->ibb.spur_sqm_timer_ms > SQM_TIMER_LOWER_LIMIT_MS &&
chip->ibb.spur_sqm_timer_ms < SQM_TIMER_UPPER_LIMIT_MS) {
rc = amoled_ibb_spur_set_sqm_timer(chip,
(u16)chip->ibb.spur_sqm_timer_ms);
if (rc < 0) {
if (rc != -EPROBE_DEFER)
dev_err(chip->dev,
"failed to enable spur SQM timer\n");
return rc;
}
}
fallthrough;
case SPUR_MITIGATION_ENABLED_WITHOUT_SQM:
rc = amoled_ibb_spur_set_thresh(chip);
if (rc < 0) {
dev_err(chip->dev, "failed to set spur thresholds!\n");
return rc;
}
rc = amoled_masked_write(chip, IBB_SPUR_CTL(chip),
SPUR_FSM_EN,
SPUR_FSM_EN);
if (rc < 0) {
dev_err(chip->dev, "failed to enable spur FSM!\n");
return rc;
}
break;
case SPUR_MITIGATION_DISABLED:
default:
/* disable ibb spur FSM */
rc = amoled_masked_write(chip, IBB_SPUR_CTL(chip),
SPUR_FSM_EN,
0);
if (rc < 0) {
dev_err(chip->dev, "failed to disable spur FSM!\n");
return rc;
}
}
return 0;
}
static int amoled_regulator_probe(struct platform_device *pdev)
{
int rc;
struct device_node *node;
struct amoled_chip *chip;
node = pdev->dev.of_node;
if (!node) {
pr_err("No nodes defined\n");
return -ENODEV;
}
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->dev = &pdev->dev;
chip->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!chip->regmap) {
dev_err(&pdev->dev, "Failed to get the regmap handle\n");
rc = -EINVAL;
goto error;
}
dev_set_drvdata(&pdev->dev, chip);
rc = amoled_parse_dt(chip);
if (rc < 0) {
dev_err(chip->dev, "Failed to parse DT params rc=%d\n", rc);
goto error;
}
rc = amoled_hw_init(chip);
if (rc < 0)
dev_err(chip->dev, "Failed to initialize HW rc=%d\n", rc);
if (is_spur_mitigation_supported(&chip->ibb)) {
rc = amoled_ibb_spur_init(chip);
if (rc < 0)
dev_err(chip->dev, "Failed to init ibb spur settings rc=%d\n",
rc);
}
error:
return rc;
}
static const struct of_device_id amoled_match_table[] = {
{ .compatible = "qcom,amoled-regulator", },
{}
};
MODULE_DEVICE_TABLE(of, amoled_match_table);
static struct platform_driver amoled_regulator_driver = {
.driver = {
.name = "qcom-amoled-regulator",
.of_match_table = amoled_match_table,
},
.probe = amoled_regulator_probe,
};
module_platform_driver(amoled_regulator_driver);
MODULE_DESCRIPTION("Qualcomm Technologies, Inc. AMOLED regulator driver");
MODULE_LICENSE("GPL");