Files
android_kernel_samsung_sm8750/drivers/iio/adc/qcom-spmi-adc5-gen3.c
2025-08-11 14:29:00 +02:00

2127 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/ipc_logging.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>
#include <linux/slab.h>
#include <linux/iio/iio.h>
#include <linux/iio/adc/qcom-vadc-common.h>
#include <dt-bindings/iio/qcom,spmi-vadc.h>
static LIST_HEAD(adc_tm_device_list);
#define ADC5_GEN3_REGMAP_ID 0x40
#define ADC5_GEN3_HS 0x45
#define ADC5_GEN3_HS_BUSY BIT(7)
#define ADC5_GEN3_HS_READY BIT(0)
#define ADC5_GEN3_STATUS1 0x46
#define ADC5_GEN3_STATUS1_CONV_FAULT BIT(7)
#define ADC5_GEN3_STATUS1_THR_CROSS BIT(6)
#define ADC5_GEN3_STATUS1_EOC BIT(0)
#define ADC5_GEN3_TM_EN_STS 0x47
#define ADC5_GEN3_TM_HIGH_STS 0x48
#define ADC5_GEN3_TM_LOW_STS 0x49
#define ADC5_GEN3_EOC_STS 0x4a
#define ADC5_GEN3_EOC_CHAN_0 BIT(0)
#define ADC5_GEN3_EOC_CLR 0x4b
#define ADC5_GEN3_TM_HIGH_STS_CLR 0x4c
#define ADC5_GEN3_TM_LOW_STS_CLR 0x4d
#define ADC5_GEN3_CONV_ERR_CLR 0x4e
#define ADC5_GEN3_CONV_ERR_CLR_REQ BIT(0)
#define ADC5_GEN3_SID 0x4f
#define ADC5_GEN3_SID_MASK GENMASK(3, 0)
#define ADC5_GEN3_PERPH_CH 0x50
#define ADC5_GEN3_CHAN_CONV_REQ BIT(7)
#define ADC5_GEN3_TIMER_SEL 0x51
#define ADC5_GEN3_TIME_IMMEDIATE 0x1
#define ADC5_GEN3_DIG_PARAM 0x52
#define ADC5_GEN3_DIG_PARAM_CAL_SEL_MASK GENMASK(5, 4)
#define ADC5_GEN3_DIG_PARAM_CAL_SEL_SHIFT 4
#define ADC5_GEN3_DIG_PARAM_DEC_RATIO_SEL_MASK GENMASK(3, 2)
#define ADC5_GEN3_DIG_PARAM_DEC_RATIO_SEL_SHIFT 2
#define ADC5_GEN3_FAST_AVG 0x53
#define ADC5_GEN3_FAST_AVG_CTL_EN BIT(7)
#define ADC5_GEN3_FAST_AVG_CTL_SAMPLES_MASK GENMASK(2, 0)
#define ADC5_GEN3_ADC_CH_SEL_CTL 0x54
#define ADC5_GEN3_DELAY_CTL 0x55
#define ADC5_GEN3_HW_SETTLE_DELAY_MASK 0xf
#define ADC5_GEN3_CH_EN 0x56
#define ADC5_GEN3_LOW_THR0 0x57
#define ADC5_GEN3_LOW_THR1 0x58
#define ADC5_GEN3_HIGH_THR0 0x59
#define ADC5_GEN3_HIGH_THR1 0x5a
#define ADC5_GEN3_CH0_DATA0 0x5c
#define ADC5_GEN3_CH0_DATA1 0x5d
#define ADC5_GEN3_CH1_DATA0 0x5e
#define ADC5_GEN3_CH1_DATA1 0x5f
#define ADC5_GEN3_CH2_DATA0 0x60
#define ADC5_GEN3_CH2_DATA1 0x61
#define ADC5_GEN3_CH3_DATA0 0x62
#define ADC5_GEN3_CH3_DATA1 0x63
#define ADC5_GEN3_CH4_DATA0 0x64
#define ADC5_GEN3_CH4_DATA1 0x65
#define ADC5_GEN3_CH5_DATA0 0x66
#define ADC5_GEN3_CH5_DATA1 0x67
#define ADC5_GEN3_CH6_DATA0 0x68
#define ADC5_GEN3_CH6_DATA1 0x69
#define ADC5_GEN3_CH7_DATA0 0x6a
#define ADC5_GEN3_CH7_DATA1 0x6b
#define ADC5_GEN3_CONV_ERROR_STS 0x6e
#define ADC5_GEN3_CONV_REQ 0xe5
#define ADC5_GEN3_CONV_REQ_REQ BIT(0)
#define ADC5_GEN3_SID_OFFSET 0x8
#define ADC5_GEN3_CHANNEL_MASK 0xff
#define V_CHAN(x) (((x).sid << ADC5_GEN3_SID_OFFSET) | (x).channel)
#define ADC_TM5_GEN3_LOWER_MASK(n) ((n) & GENMASK(7, 0))
#define ADC_TM5_GEN3_UPPER_MASK(n) (((n) & GENMASK(15, 8)) >> 8)
enum adc5_cal_method {
ADC5_NO_CAL = 0,
ADC5_RATIOMETRIC_CAL,
ADC5_ABSOLUTE_CAL
};
enum adc_time_select {
MEAS_INT_DISABLE = 0,
MEAS_INT_IMMEDIATE,
MEAS_INT_50MS,
MEAS_INT_100MS,
MEAS_INT_1S,
MEAS_INT_NONE,
};
enum adc_tm_type {
ADC_TM_NONE = 0,
ADC_TM,
ADC_TM_IIO,
ADC_TM_NON_THERMAL,
ADC_TM_INVALID,
};
static struct adc_tm_reverse_scale_fn adc_tm_rscale_fn[] = {
[SCALE_R_ABSOLUTE] = {adc_tm_absolute_rthr_gen3},
};
struct adc5_base_data {
u16 base_addr;
const char *irq_name;
int irq;
};
/**
* struct adc5_channel_prop - ADC channel property.
* @channel: channel number, refer to the channel list.
* @cal_method: calibration method.
* @decimation: sampling rate supported for the channel.
* @sid: slave id of PMIC owning the channel, for PMIC5 Gen2 and above.
* @prescale: channel scaling performed on the input signal.
* @hw_settle_time: the time between AMUX being configured and the
* start of conversion.
* @avg_samples: ability to provide single result from the ADC
* that is an average of multiple measurements.
* @sdam_index: Index for which SDAM this channel is on.
* @generation: indicates if channel is ADC5 GEN3 or GEN4
* @scale_fn_type: Represents the scaling function to convert voltage
* physical units desired by the client for the channel.
* @datasheet_name: Channel name used in device tree.
* @chip: pointer to top-level ADC device structure.
* @data: software configuration data.
* @adc_tm: indicates TM type if the channel is used for TM measurements.
* @tm_chan_index: TM channel number used (ranging from 1-7).
* @timer: time period of recurring TM measurement.
* @tzd: pointer to thermal device corresponding to TM channel.
* @high_thr_en: TM high threshold crossing detection enabled.
* @low_thr_en: TM low threshold crossing detection enabled.
* @high_thr_triggered: indicates if high TM threshold has been triggered.
* @low_thr_triggered: indicates if low TM threshold has been triggered.
* @high_thr_voltage: upper threshold voltage for TM.
* @low_thr_voltage: lower threshold voltage for TM.
* @last_temp: last temperature that caused threshold violation,
* or a thermal TM channel.
* @last_temp_set: indicates if last_temp is stored.
* @req_wq: workqueue holding queued notification tasks for a non-thermal
* TM channel.
* @work: scheduled work for handling non-thermal TM client notification.
* @thr_list: list of client thresholds configured for non-thermal TM channel.
* @adc_rscale_fn: reverse scaling function to convert voltage to raw code
* for non-thermal TM channels.
*/
struct adc5_channel_prop {
unsigned int channel;
enum adc5_cal_method cal_method;
unsigned int decimation;
unsigned int sid;
unsigned int prescale;
unsigned int hw_settle_time;
unsigned int avg_samples;
unsigned int sdam_index;
enum vadc_generation generation;
enum vadc_scale_fn_type scale_fn_type;
const char *datasheet_name;
struct adc5_chip *chip;
const struct adc5_data *data;
/* TM properties */
int adc_tm;
unsigned int tm_chan_index;
unsigned int timer;
struct thermal_zone_device *tzd;
int high_thr_en;
int low_thr_en;
bool high_thr_triggered;
bool low_thr_triggered;
int64_t high_thr_voltage;
int64_t low_thr_voltage;
int last_temp;
bool last_temp_set;
struct workqueue_struct *req_wq;
struct work_struct work;
struct list_head thr_list;
enum adc_tm_rscale_fn_type adc_rscale_fn;
};
/**
* struct adc5_chip - ADC private structure.
* @regmap: SPMI ADC5 peripheral register map field.
* @dev: SPMI ADC5 device.
* @ipc_log: ipc logging handle.
* @base: pointer to array of ADC peripheral base and interrupt.
* @debug_base: base address for the reserved ADC peripheral,
* to dump for debug purposes alone.
* @num_sdams: number of SDAMs being used.
* @num_interrupts: number of ADC interrupts received.
* @nchannels: number of ADC channels.
* @chan_props: array of ADC channel properties.
* @iio_chans: array of IIO channels specification.
* @complete: ADC result notification after interrupt is received.
* @lock: ADC lock for access to the peripheral.
* @n_tm_channels: number of ADC channels used for TM measurements.
* @list: list item, used to add this device to gloal list of ADC_TM devices.
* @device_list: pointer to list of ADC_TM devices.
* @tm_handler_work: scheduled work for handling TM threshold violation.
* @tm_err_handler_work: scheduled work for handling TM conversion error.
* @conv_err: pointer to array of TM conversion error faults stored for ADC
* peripherals.
* @tm_lock: spinlock to be used to guard access to conversion error array.
*/
struct adc5_chip {
struct regmap *regmap;
struct device *dev;
void *ipc_log;
struct adc5_base_data *base;
u16 debug_base;
unsigned int num_sdams;
unsigned int num_interrupts;
unsigned int nchannels;
struct adc5_channel_prop *chan_props;
struct iio_chan_spec *iio_chans;
struct completion complete;
struct mutex lock;
/* TM properties */
unsigned int n_tm_channels;
struct list_head list;
struct list_head *device_list;
struct work_struct tm_handler_work;
struct work_struct tm_err_handler_work;
u8 *conv_err;
spinlock_t tm_lock;
};
static int adc5_read(struct adc5_chip *adc, unsigned int sdam_index, u16 offset, u8 *data, int len)
{
int ret;
ret = regmap_bulk_read(adc->regmap, adc->base[sdam_index].base_addr + offset, data, len);
if (ret < 0)
pr_err("adc read to register 0x%x of length:%d failed, ret=%d\n", offset, len, ret);
return ret;
}
static int adc5_write(struct adc5_chip *adc, unsigned int sdam_index, u16 offset, u8 *data, int len)
{
int ret;
ret = regmap_bulk_write(adc->regmap, adc->base[sdam_index].base_addr + offset, data, len);
if (ret < 0)
pr_err("adc write to register 0x%x of length:%d failed, ret=%d\n", offset, len,
ret);
return ret;
}
static int adc5_hw_settle_time_from_dt(u32 value,
const unsigned int *hw_settle)
{
unsigned int i;
for (i = 0; i < VADC_HW_SETTLE_SAMPLES_MAX; i++) {
if (value == hw_settle[i])
return i;
}
return -ENOENT;
}
static int adc5_avg_samples_from_dt(u32 value)
{
if (!is_power_of_2(value) || value > ADC5_AVG_SAMPLES_MAX)
return -EINVAL;
return __ffs(value);
}
static int adc5_decimation_from_dt(u32 value,
const unsigned int *decimation)
{
unsigned int i;
for (i = 0; i < ADC5_DECIMATION_SAMPLES_MAX; i++) {
if (value == decimation[i])
return i;
}
return -ENOENT;
}
#define NUM_BYTES 8
#define REG_COUNT 32
#define REG_IPC_COUNT 6
#if IS_ENABLED(CONFIG_QCOM_SPMI_ADC5_GEN3_DEBUG_LOGGING)
static void adc5_gen3_dump_register(struct regmap *regmap, unsigned int offset)
{
int i, rc;
u8 buf[NUM_BYTES];
for (i = 0; i < REG_COUNT; i++) {
rc = regmap_bulk_read(regmap, offset, buf, sizeof(buf));
if (rc < 0) {
pr_err("debug register dump failed with rc=%d\n", rc);
return;
}
pr_err("%#04x: %*ph\n", offset, (int)(sizeof(buf)), buf);
offset += NUM_BYTES;
}
pr_err("\n");
}
static void adc5_gen3_dump_regs_debug(struct adc5_chip *adc)
{
u32 i;
for (i = 0; i < adc->num_sdams; i++) {
pr_err("ADC SDAM%d DUMP\n", i);
adc5_gen3_dump_register(adc->regmap, adc->base[i].base_addr);
}
if (adc->debug_base) {
pr_err("ADC DEBUG BASE DUMP\n");
adc5_gen3_dump_register(adc->regmap, adc->debug_base);
}
BUG_ON(1);
}
#else
static void adc5_gen3_ipc_dump_register(struct adc5_chip *adc, unsigned int offset)
{
int i, rc;
u8 buf[NUM_BYTES];
for (i = 0; i < REG_IPC_COUNT; i++) {
rc = regmap_bulk_read(adc->regmap, offset, buf, sizeof(buf));
if (rc < 0) {
pr_err("debug register dump failed with rc=%d\n", rc);
return;
}
ipc_log_string(adc->ipc_log, "%#04x: %*ph\n", offset, (int)(sizeof(buf)), buf);
offset += NUM_BYTES;
}
}
static void adc5_gen3_dump_regs_debug(struct adc5_chip *adc)
{
u32 i;
for (i = 0; i < adc->num_sdams; i++) {
ipc_log_string(adc->ipc_log, "ADC SDAM%d DUMP\n", i);
adc5_gen3_ipc_dump_register(adc, adc->base[i].base_addr + ADC5_GEN3_REGMAP_ID);
}
}
#endif
static int adc5_gen3_read_voltage_data(struct adc5_chip *adc, u16 *data,
u8 sdam_index, enum vadc_generation generation)
{
int ret;
u8 rslt[2];
ret = adc5_read(adc, sdam_index, ADC5_GEN3_CH0_DATA0, rslt, 2);
if (ret < 0)
return ret;
*data = (rslt[1] << 8) | rslt[0];
if (*data == ADC5_USR_DATA_CHECK && generation == ADC5_GEN3) {
pr_err("Invalid data:%#x\n", *data);
return -EINVAL;
}
pr_debug("voltage raw code:0x%x\n", *data);
return 0;
}
static void adc5_gen3_update_dig_param(struct adc5_chip *adc,
struct adc5_channel_prop *prop, u8 *data)
{
/* Update calibration select */
*data &= ~ADC5_GEN3_DIG_PARAM_CAL_SEL_MASK;
*data |= (prop->cal_method << ADC5_GEN3_DIG_PARAM_CAL_SEL_SHIFT);
/* Update decimation ratio select */
*data &= ~ADC5_GEN3_DIG_PARAM_DEC_RATIO_SEL_MASK;
*data |= (prop->decimation << ADC5_GEN3_DIG_PARAM_DEC_RATIO_SEL_SHIFT);
}
static int adc5_gen3_configure(struct adc5_chip *adc,
struct adc5_channel_prop *prop)
{
int ret;
u8 conv_req = 0, buf[7];
u8 sdam_index = prop->sdam_index;
/* Reserve channel 0 of first SDAM for immediate conversions */
if (prop->adc_tm)
sdam_index = 0;
ret = adc5_read(adc, sdam_index, ADC5_GEN3_SID, buf, sizeof(buf));
if (ret < 0)
return ret;
/* Write SID */
buf[0] = prop->sid & ADC5_GEN3_SID_MASK;
/*
* Use channel 0 by default for immediate conversion and
* to indicate there is an actual conversion request
*/
buf[1] = ADC5_GEN3_CHAN_CONV_REQ | 0;
buf[2] = ADC5_GEN3_TIME_IMMEDIATE;
/* Digital param selection */
adc5_gen3_update_dig_param(adc, prop, &buf[3]);
/* Update fast average sample value */
buf[4] &= (u8) ~ADC5_GEN3_FAST_AVG_CTL_SAMPLES_MASK;
buf[4] |= prop->avg_samples | ADC5_GEN3_FAST_AVG_CTL_EN;
/* Select ADC channel */
buf[5] = prop->channel;
/* Select HW settle delay for channel */
buf[6] &= (u8) ~ADC5_GEN3_HW_SETTLE_DELAY_MASK;
buf[6] |= prop->hw_settle_time;
reinit_completion(&adc->complete);
ret = adc5_write(adc, sdam_index, ADC5_GEN3_SID, buf, sizeof(buf));
if (ret < 0)
return ret;
conv_req = ADC5_GEN3_CONV_REQ_REQ;
ret = adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &conv_req, 1);
return ret;
}
#define ADC5_GEN3_HS_DELAY_MIN_US 100
#define ADC5_GEN3_HS_DELAY_MAX_US 110
#define ADC5_GEN3_HS_RETRY_COUNT 150
static int adc5_gen3_poll_wait_hs(struct adc5_chip *adc,
unsigned int sdam_index)
{
int ret, count;
u8 status = 0, conv_req = ADC5_GEN3_CONV_REQ_REQ;
for (count = 0; count < ADC5_GEN3_HS_RETRY_COUNT; count++) {
ret = adc5_read(adc, sdam_index, ADC5_GEN3_HS, &status, 1);
if (ret < 0)
return ret;
if (status == ADC5_GEN3_HS_READY) {
ret = adc5_read(adc, sdam_index, ADC5_GEN3_CONV_REQ,
&conv_req, 1);
if (ret < 0)
return ret;
if (!conv_req)
break;
}
usleep_range(ADC5_GEN3_HS_DELAY_MIN_US,
ADC5_GEN3_HS_DELAY_MAX_US);
}
if (count == ADC5_GEN3_HS_RETRY_COUNT) {
pr_err("Setting HS ready bit timed out, status:%#x\n", status);
ipc_log_string(adc->ipc_log,
"Setting HS ready bit timed out, status:%#x\n",
status);
return -ETIMEDOUT;
}
return 0;
}
#define ADC5_GEN3_CONV_TIMEOUT_MS 50
#define ADC5_GEN3_POLL_ATTEMPTS 10
static int adc5_gen3_do_conversion(struct adc5_chip *adc,
struct adc5_channel_prop *prop,
u16 *data_volt)
{
int ret, i;
bool poll_eoc = false;
unsigned long rc;
unsigned int time_pending_ms;
u8 val, eoc_status, sdam_index = prop->sdam_index;
/* Reserve channel 0 of first SDAM for immediate conversions */
if (prop->adc_tm)
sdam_index = 0;
mutex_lock(&adc->lock);
ret = adc5_gen3_poll_wait_hs(adc, 0);
if (ret < 0)
goto unlock;
ret = adc5_gen3_configure(adc, prop);
if (ret < 0) {
pr_err("ADC configure failed with %d\n", ret);
goto unlock;
}
for (i = 0; i < ADC5_GEN3_POLL_ATTEMPTS; i++) {
/* Trying both polling and waiting for interrupt */
rc = wait_for_completion_timeout(&adc->complete,
msecs_to_jiffies(ADC5_GEN3_CONV_TIMEOUT_MS));
if (rc) {
pr_debug("Got EOC interrupt after %d polling attempts\n", i);
break;
}
/* CHAN0 is the preconfigured channel for immediate conversion */
ret = adc5_read(adc, 0, ADC5_GEN3_EOC_STS, &eoc_status, 1);
if (ret < 0) {
pr_err("adc read eoc status failed with %d\n", ret);
goto unlock;
}
if (eoc_status & ADC5_GEN3_EOC_CHAN_0) {
poll_eoc = true;
break;
}
}
if (!rc && !poll_eoc) {
pr_err("Reading ADC channel %s timed out\n",
prop->datasheet_name);
ipc_log_string(adc->ipc_log,
"Reading ADC channel %s timed out\n",
prop->datasheet_name);
adc5_gen3_dump_regs_debug(adc);
ret = -ETIMEDOUT;
goto unlock;
}
time_pending_ms = jiffies_to_msecs(rc);
pr_debug("ADC channel %s EOC took %u ms\n", prop->datasheet_name,
(i + 1) * ADC5_GEN3_CONV_TIMEOUT_MS - time_pending_ms);
ret = adc5_gen3_read_voltage_data(adc, data_volt, sdam_index, prop->generation);
if (ret < 0)
goto unlock;
val = BIT(0);
ret = adc5_write(adc, sdam_index, ADC5_GEN3_EOC_CLR, &val, 1);
if (ret < 0)
goto unlock;
/* To indicate conversion request is only to clear a status */
val = 0;
ret = adc5_write(adc, sdam_index, ADC5_GEN3_PERPH_CH, &val, 1);
if (ret < 0)
goto unlock;
val = ADC5_GEN3_CONV_REQ_REQ;
ret = adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &val, 1);
unlock:
mutex_unlock(&adc->lock);
return ret;
}
static int get_sdam_from_irq(struct adc5_chip *adc, int irq)
{
int i;
for (i = 0; i < adc->num_interrupts; i++) {
if (adc->base[i].irq == irq)
return i;
}
return -ENOENT;
}
static int adc5_gen3_clear_conv_fault(struct adc5_chip *adc, int sdam_num, u8 val)
{
int ret;
ret = adc5_write(adc, sdam_num, ADC5_GEN3_CONV_ERR_CLR, &val, 1);
if (ret < 0)
return ret;
/* To indicate conversion request is only to clear a status */
val = 0;
ret = adc5_write(adc, sdam_num, ADC5_GEN3_PERPH_CH, &val, 1);
if (ret < 0)
return ret;
val = ADC5_GEN3_CONV_REQ_REQ;
return adc5_write(adc, sdam_num, ADC5_GEN3_CONV_REQ, &val, 1);
}
static int adc_tm5_gen3_configure(struct adc5_channel_prop *prop);
static irqreturn_t adc5_gen3_isr(int irq, void *dev_id)
{
struct adc5_chip *adc = dev_id;
u8 status, tm_status[2], eoc_status, conv_err;
int ret, sdam_num;
sdam_num = get_sdam_from_irq(adc, irq);
if (sdam_num < 0) {
pr_err("adc irq %d not associated with an sdam\n", irq);
goto handler_end;
}
ret = adc5_read(adc, sdam_num, ADC5_GEN3_EOC_STS, &eoc_status, 1);
if (ret < 0) {
pr_err("adc read eoc status failed with %d\n", ret);
goto handler_end;
}
ret = adc5_read(adc, sdam_num, ADC5_GEN3_STATUS1, &status, 1);
if (ret < 0) {
pr_err("adc read status1 failed with %d\n", ret);
goto handler_end;
}
ret = adc5_read(adc, sdam_num, ADC5_GEN3_CONV_ERROR_STS, &conv_err, 1);
if (ret < 0) {
pr_err("adc read conv_error_sts failed with %d\n", ret);
goto handler_end;
}
/* CHAN0 is the preconfigured channel for immediate conversion */
if ((status & ADC5_GEN3_STATUS1_EOC) && !conv_err &&
(eoc_status & ADC5_GEN3_EOC_CHAN_0))
complete(&adc->complete);
pr_debug("Interrupt status:%#x, EOC status:%#x, conv_err:%#x\n",
status, eoc_status, conv_err);
if (status & ADC5_GEN3_STATUS1_CONV_FAULT) {
pr_err_ratelimited("Unexpected conversion fault, status:%#x, eoc_status:%#x, conv_err:%#x\n",
status, eoc_status, conv_err);
ipc_log_string(adc->ipc_log,
"Unexpected conversion fault, status:%#x, eoc_status:%#x, conv_err:%#x\n",
status, eoc_status, conv_err);
adc5_gen3_dump_regs_debug(adc);
ret = adc5_gen3_clear_conv_fault(adc, sdam_num, conv_err);
if (ret < 0)
goto handler_end;
if (sdam_num == 0 && (conv_err & BIT(0))) {
return IRQ_HANDLED;
} else if (conv_err) {
spin_lock(&adc->tm_lock);
adc->conv_err[sdam_num] |= conv_err;
spin_unlock(&adc->tm_lock);
schedule_work(&adc->tm_err_handler_work);
return IRQ_HANDLED;
}
}
ret = adc5_read(adc, sdam_num, ADC5_GEN3_TM_HIGH_STS, tm_status, 2);
if (ret < 0) {
pr_err("adc read TM status failed with %d\n", ret);
goto handler_end;
}
if (tm_status[0] || tm_status[1])
schedule_work(&adc->tm_handler_work);
return IRQ_HANDLED;
handler_end:
return IRQ_NONE;
}
static void tm_err_handler_work(struct work_struct *work)
{
struct adc5_chip *adc = container_of(work, struct adc5_chip,
tm_err_handler_work);
unsigned long flags;
int i, sdam_num;
u8 conv_err;
for (sdam_num = 0; sdam_num < adc->num_sdams; sdam_num++) {
spin_lock_irqsave(&adc->tm_lock, flags);
conv_err = adc->conv_err[sdam_num];
if (!conv_err) {
spin_unlock_irqrestore(&adc->tm_lock, flags);
continue;
}
adc->conv_err[sdam_num] = 0;
spin_unlock_irqrestore(&adc->tm_lock, flags);
/* Reconfigure ADC TM channels */
for (i = 0; i < adc->nchannels; i++) {
if (!adc->chan_props[i].adc_tm)
continue;
if (sdam_num != adc->chan_props[i].sdam_index)
continue;
if (conv_err & BIT(adc->chan_props[i].tm_chan_index)) {
ipc_log_string(adc->ipc_log,
"Reconfiguring %s channel after conversion fault\n",
adc->chan_props[i].datasheet_name);
mutex_lock(&adc->lock);
adc_tm5_gen3_configure(&adc->chan_props[i]);
mutex_unlock(&adc->lock);
}
}
}
}
static void tm_handler_work(struct work_struct *work)
{
struct adc5_channel_prop *chan_prop;
u8 tm_status[2] = {0};
u8 buf[16] = {0};
u8 val;
int ret, i, sdam_index = -1;
struct adc5_chip *adc = container_of(work, struct adc5_chip,
tm_handler_work);
for (i = 0; i < adc->nchannels; i++) {
bool upper_set = false, lower_set = false;
u8 data_low = 0, data_high = 0;
u16 code = 0;
int temp, offset;
chan_prop = &adc->chan_props[i];
offset = chan_prop->tm_chan_index;
if (chan_prop->adc_tm != ADC_TM && chan_prop->adc_tm != ADC_TM_NON_THERMAL)
continue;
mutex_lock(&adc->lock);
if (chan_prop->sdam_index != sdam_index) {
sdam_index = chan_prop->sdam_index;
ret = adc5_read(adc, sdam_index, ADC5_GEN3_TM_HIGH_STS, tm_status, 2);
if (ret < 0) {
pr_err("adc read TM status failed with %d\n", ret);
goto work_unlock;
}
ret = adc5_write(adc, sdam_index, ADC5_GEN3_TM_HIGH_STS_CLR, tm_status, 2);
if (ret < 0) {
pr_err("adc write TM status failed with %d\n", ret);
goto work_unlock;
}
/* To indicate conversion request is only to clear a status */
val = 0;
ret = adc5_write(adc, sdam_index, ADC5_GEN3_PERPH_CH, &val, 1);
if (ret < 0) {
pr_err("adc write status clear conv_req failed with %d\n", ret);
goto work_unlock;
}
val = ADC5_GEN3_CONV_REQ_REQ;
ret = adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &val, 1);
if (ret < 0) {
pr_err("adc write conv_req failed with %d\n", ret);
goto work_unlock;
}
ret = adc5_read(adc, sdam_index, ADC5_GEN3_CH0_DATA0, buf, sizeof(buf));
if (ret < 0) {
pr_err("adc read data failed with %d\n", ret);
goto work_unlock;
}
}
if ((tm_status[0] & BIT(offset)) && (chan_prop->high_thr_en))
upper_set = true;
if ((tm_status[1] & BIT(offset)) && (chan_prop->low_thr_en))
lower_set = true;
mutex_unlock(&adc->lock);
if (!(upper_set || lower_set))
continue;
data_low = buf[2 * offset];
data_high = buf[2 * offset + 1];
code = ((data_high << 8) | data_low);
pr_debug("ADC_TM threshold code:0x%x\n", code);
if (chan_prop->adc_tm == ADC_TM_NON_THERMAL) {
if (lower_set) {
mutex_lock(&adc->lock);
chan_prop->low_thr_en = 0;
chan_prop->low_thr_triggered = true;
mutex_unlock(&adc->lock);
queue_work(chan_prop->req_wq,
&chan_prop->work);
}
if (upper_set) {
mutex_lock(&adc->lock);
chan_prop->high_thr_en = 0;
chan_prop->high_thr_triggered = true;
mutex_unlock(&adc->lock);
queue_work(chan_prop->req_wq,
&chan_prop->work);
}
} else {
ret = qcom_adc5_hw_scale(chan_prop->scale_fn_type,
chan_prop->prescale, chan_prop->data, code, &temp);
if (ret < 0) {
pr_err("Invalid temperature reading, ret=%d, code=0x%x\n",
ret, code);
continue;
}
pr_debug("notifying thermal, temp:%d\n", temp);
chan_prop->last_temp = temp;
chan_prop->last_temp_set = true;
thermal_zone_device_update(chan_prop->tzd, THERMAL_TRIP_VIOLATED);
}
}
return;
work_unlock:
mutex_unlock(&adc->lock);
}
static int adc5_gen3_fwnode_xlate(struct iio_dev *indio_dev,
const struct fwnode_reference_args *iiospec)
{
struct adc5_chip *adc = iio_priv(indio_dev);
int i, v_channel;
for (i = 0; i < adc->nchannels; i++) {
v_channel = V_CHAN(adc->chan_props[i]);
if (v_channel == iiospec->args[0])
return i;
}
return -ENOENT;
}
static int adc5_gen3_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2,
long mask)
{
struct adc5_chip *adc = iio_priv(indio_dev);
struct adc5_channel_prop *prop;
u16 adc_code_volt;
int ret;
prop = &adc->chan_props[chan->address];
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
ret = adc5_gen3_do_conversion(adc, prop,
&adc_code_volt);
if (ret < 0)
return ret;
ret = qcom_adc5_hw_scale(prop->scale_fn_type,
prop->prescale, prop->data,
adc_code_volt, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_RAW:
ret = adc5_gen3_do_conversion(adc, prop,
&adc_code_volt);
if (ret < 0)
return ret;
*val = (int)adc_code_volt;
return IIO_VAL_INT;
default:
return -EINVAL;
}
return 0;
}
static const struct iio_info adc5_gen3_info = {
.read_raw = adc5_gen3_read_raw,
.fwnode_xlate = adc5_gen3_fwnode_xlate,
};
/* Used by thermal clients to read ADC channel temperature */
int adc_tm_gen3_get_temp(struct thermal_zone_device *tz, int *temp)
{
int ret;
struct adc5_channel_prop *prop = tz->devdata;
struct adc5_chip *adc;
u16 adc_code_volt;
if (!prop || !prop->chip)
return -EINVAL;
adc = prop->chip;
if (prop->last_temp_set) {
pr_debug("last_temp: %d\n", prop->last_temp);
prop->last_temp_set = false;
*temp = prop->last_temp;
return 0;
}
ret = adc5_gen3_do_conversion(adc, prop, &adc_code_volt);
if (ret < 0)
return ret;
return qcom_adc5_hw_scale(prop->scale_fn_type,
prop->prescale, prop->data,
adc_code_volt, temp);
}
static int adc_tm5_gen3_configure(struct adc5_channel_prop *prop)
{
int ret;
u8 conv_req = 0, buf[12];
u32 mask = 0;
struct adc5_chip *adc = prop->chip;
ret = adc5_gen3_poll_wait_hs(adc, prop->sdam_index);
if (ret < 0)
return ret;
ret = adc5_read(adc, prop->sdam_index, ADC5_GEN3_SID, buf, sizeof(buf));
if (ret < 0)
return ret;
/* Write SID */
buf[0] = prop->sid & ADC5_GEN3_SID_MASK;
/*
* Select TM channel and indicate there is an actual
* conversion request
*/
buf[1] = ADC5_GEN3_CHAN_CONV_REQ | prop->tm_chan_index;
buf[2] = prop->timer;
/* Digital param selection */
adc5_gen3_update_dig_param(adc, prop, &buf[3]);
/* Update fast average sample value */
buf[4] &= (u8) ~ADC5_GEN3_FAST_AVG_CTL_SAMPLES_MASK;
buf[4] |= prop->avg_samples | ADC5_GEN3_FAST_AVG_CTL_EN;
/* Select ADC channel */
buf[5] = prop->channel;
/* Select HW settle delay for channel */
buf[6] &= (u8) ~ADC5_GEN3_HW_SETTLE_DELAY_MASK;
buf[6] |= prop->hw_settle_time;
buf[7] = prop->high_thr_en << 1 | prop->low_thr_en;
mask = lower_32_bits(prop->low_thr_voltage);
buf[8] = ADC_TM5_GEN3_LOWER_MASK(mask);
buf[9] = ADC_TM5_GEN3_UPPER_MASK(mask);
mask = lower_32_bits(prop->high_thr_voltage);
buf[10] = ADC_TM5_GEN3_LOWER_MASK(mask);
buf[11] = ADC_TM5_GEN3_UPPER_MASK(mask);
ret = adc5_write(adc, prop->sdam_index, ADC5_GEN3_SID, buf, sizeof(buf));
if (ret < 0)
return ret;
conv_req = ADC5_GEN3_CONV_REQ_REQ;
return adc5_write(adc, prop->sdam_index, ADC5_GEN3_CONV_REQ, &conv_req, 1);
}
/* WA to add writable trip_temp_*_hyst sysfs node till core has proper fix */
static int adc_tm5_gen3_set_trip_hyst(struct thermal_zone_device *tz,
int trip, int hysteresis)
{
return 0;
}
static int adc_tm5_gen3_set_trip_temp(struct thermal_zone_device *tz,
int low_temp, int high_temp)
{
struct adc5_channel_prop *prop = tz->devdata;
struct adc5_chip *adc;
struct adc_tm_config tm_config;
int ret;
if (!prop)
return -EINVAL;
pr_debug("channel:%s :low_temp(mdegC):%d, high_temp(mdegC):%d\n",
prop->datasheet_name, low_temp, high_temp);
adc = prop->chip;
tm_config.high_thr_temp = tm_config.low_thr_temp = 0;
if (high_temp != INT_MAX)
tm_config.high_thr_temp = high_temp;
if (low_temp != INT_MIN)
tm_config.low_thr_temp = low_temp;
if ((high_temp == INT_MAX) && (low_temp == INT_MIN)) {
pr_err("No trips to set\n");
return -EINVAL;
}
pr_debug("requested a low temp- %d and high temp- %d\n",
tm_config.low_thr_temp, tm_config.high_thr_temp);
adc_tm_scale_therm_voltage_100k_gen3(&tm_config, prop->data);
/*
* Thresholds are forward scaled to confirm their
* temperatures will actually cause a violation, before
* being written.
*/
pr_debug("high_thr:0x%llx, low_thr:0x%llx\n",
tm_config.high_thr_voltage, tm_config.low_thr_voltage);
mutex_lock(&adc->lock);
if (high_temp != INT_MAX) {
prop->low_thr_voltage = tm_config.low_thr_voltage;
prop->low_thr_en = 1;
} else {
prop->low_thr_en = 0;
}
if (low_temp > -INT_MAX) {
prop->high_thr_voltage = tm_config.high_thr_voltage;
prop->high_thr_en = 1;
} else {
prop->high_thr_en = 0;
}
ret = adc_tm5_gen3_configure(prop);
if (ret < 0)
pr_err("Error during adc-tm configure:%d\n", ret);
mutex_unlock(&adc->lock);
return ret;
}
#define MAX_PROP_NAME_LEN 32
struct adc5_chip *get_adc_tm_gen3(struct device *dev, const char *name)
{
struct platform_device *pdev;
struct adc5_chip *chip;
struct device_node *node = NULL;
char prop_name[MAX_PROP_NAME_LEN];
scnprintf(prop_name, MAX_PROP_NAME_LEN, "qcom,%s-adc_tm", name);
node = of_parse_phandle(dev->of_node, prop_name, 0);
if (node == NULL)
return ERR_PTR(-ENODEV);
list_for_each_entry(chip, &adc_tm_device_list, list) {
pdev = to_platform_device(chip->dev);
if (pdev->dev.of_node == node) {
of_node_put(node);
return chip;
}
}
of_node_put(node);
return ERR_PTR(-EPROBE_DEFER);
}
EXPORT_SYMBOL_GPL(get_adc_tm_gen3);
static int32_t adc_tm_add_to_list(struct adc5_chip *chip,
uint32_t dt_index,
struct adc_tm_param *param)
{
struct adc_tm_client_info *client_info = NULL;
bool client_info_exists = false;
list_for_each_entry(client_info,
&chip->chan_props[dt_index].thr_list, list) {
if (client_info->param->id == param->id) {
client_info->low_thr_requested = param->low_thr;
client_info->high_thr_requested = param->high_thr;
client_info->state_request = param->state_request;
client_info->notify_low_thr = false;
client_info->notify_high_thr = false;
client_info_exists = true;
}
}
if (!client_info_exists) {
client_info = devm_kzalloc(chip->dev,
sizeof(struct adc_tm_client_info), GFP_KERNEL);
if (!client_info)
return -ENOMEM;
client_info->param->id = (uintptr_t) client_info;
client_info->low_thr_requested = param->low_thr;
client_info->high_thr_requested = param->high_thr;
client_info->state_request = param->state_request;
list_add_tail(&client_info->list,
&chip->chan_props[dt_index].thr_list);
}
return 0;
}
static int32_t adc_tm_gen3_manage_thresholds(struct adc5_channel_prop *prop)
{
int high_thr = INT_MAX, low_thr = INT_MIN;
struct adc_tm_client_info *client_info = NULL;
struct list_head *thr_list;
uint32_t scale_type = 0;
struct adc_tm_config tm_config;
prop->high_thr_en = 0;
prop->low_thr_en = 0;
/*
* Reset the high_thr_set and low_thr_set of all
* clients since the thresholds will be recomputed.
*/
list_for_each(thr_list, &prop->thr_list) {
client_info = list_entry(thr_list,
struct adc_tm_client_info, list);
client_info->high_thr_set = false;
client_info->low_thr_set = false;
}
/* Find the min of high_thr and max of low_thr */
list_for_each(thr_list, &prop->thr_list) {
client_info = list_entry(thr_list,
struct adc_tm_client_info, list);
if ((client_info->state_request == ADC_TM_HIGH_THR_ENABLE) ||
(client_info->state_request ==
ADC_TM_HIGH_LOW_THR_ENABLE))
if (client_info->high_thr_requested < high_thr)
high_thr = client_info->high_thr_requested;
if ((client_info->state_request == ADC_TM_LOW_THR_ENABLE) ||
(client_info->state_request ==
ADC_TM_HIGH_LOW_THR_ENABLE))
if (client_info->low_thr_requested > low_thr)
low_thr = client_info->low_thr_requested;
pr_debug("threshold compared is high:%d and low:%d\n",
client_info->high_thr_requested,
client_info->low_thr_requested);
pr_debug("current threshold is high:%d and low:%d\n",
high_thr, low_thr);
}
/* Check which of the high_thr and low_thr got set */
list_for_each(thr_list, &prop->thr_list) {
client_info = list_entry(thr_list,
struct adc_tm_client_info, list);
if ((client_info->state_request == ADC_TM_HIGH_THR_ENABLE) ||
(client_info->state_request ==
ADC_TM_HIGH_LOW_THR_ENABLE))
if (high_thr == client_info->high_thr_requested) {
prop->high_thr_en = 1;
client_info->high_thr_set = true;
}
if ((client_info->state_request == ADC_TM_LOW_THR_ENABLE) ||
(client_info->state_request ==
ADC_TM_HIGH_LOW_THR_ENABLE))
if (low_thr == client_info->low_thr_requested) {
prop->low_thr_en = 1;
client_info->low_thr_set = true;
}
}
tm_config.high_thr_voltage = (int64_t)high_thr;
tm_config.low_thr_voltage = (int64_t)low_thr;
scale_type = prop->adc_rscale_fn;
if (scale_type >= SCALE_RSCALE_NONE)
return -EBADF;
adc_tm_rscale_fn[scale_type].chan(&tm_config);
prop->low_thr_voltage = tm_config.low_thr_voltage;
prop->high_thr_voltage = tm_config.high_thr_voltage;
pr_debug("threshold written is high:%d and low:%d\n",
high_thr, low_thr);
return 0;
}
/* Used to notify non-thermal clients of threshold crossing */
void notify_adc_tm_fn(struct work_struct *work)
{
struct adc5_channel_prop *prop = container_of(work,
struct adc5_channel_prop, work);
struct adc_tm_client_info *client_info = NULL;
struct adc5_chip *chip;
struct list_head *thr_list;
int ret;
chip = prop->chip;
mutex_lock(&chip->lock);
if (prop->low_thr_triggered) {
/* adjust thr, calling manage_thr */
list_for_each(thr_list, &prop->thr_list) {
client_info = list_entry(thr_list,
struct adc_tm_client_info, list);
if (client_info->low_thr_set) {
client_info->low_thr_set = false;
client_info->notify_low_thr = true;
if (client_info->state_request ==
ADC_TM_HIGH_LOW_THR_ENABLE)
client_info->state_request =
ADC_TM_HIGH_THR_ENABLE;
else
client_info->state_request =
ADC_TM_LOW_THR_DISABLE;
}
}
prop->low_thr_triggered = false;
}
if (prop->high_thr_triggered) {
/* adjust thr, calling manage_thr */
list_for_each(thr_list, &prop->thr_list) {
client_info = list_entry(thr_list,
struct adc_tm_client_info, list);
if (client_info->high_thr_set) {
client_info->high_thr_set = false;
client_info->notify_high_thr = true;
if (client_info->state_request ==
ADC_TM_HIGH_LOW_THR_ENABLE)
client_info->state_request =
ADC_TM_LOW_THR_ENABLE;
else
client_info->state_request =
ADC_TM_HIGH_THR_DISABLE;
}
}
prop->high_thr_triggered = false;
}
ret = adc_tm_gen3_manage_thresholds(prop);
if (ret < 0)
pr_err("Error in reverse scaling:%d\n", ret);
ret = adc_tm5_gen3_configure(prop);
if (ret < 0)
pr_err("Error during adc-tm configure:%d\n", ret);
mutex_unlock(&chip->lock);
list_for_each_entry(client_info, &prop->thr_list, list) {
if (client_info->notify_low_thr &&
client_info->param->threshold_notification != NULL) {
pr_debug("notify kernel with low state for channel 0x%x\n",
prop->channel);
client_info->param->threshold_notification(
ADC_TM_LOW_STATE,
client_info->param->btm_ctx);
client_info->notify_low_thr = false;
}
if (client_info->notify_high_thr &&
client_info->param->threshold_notification != NULL) {
pr_debug("notify kernel with high state for channel 0x%x\n",
prop->channel);
client_info->param->threshold_notification(
ADC_TM_HIGH_STATE,
client_info->param->btm_ctx);
client_info->notify_high_thr = false;
}
}
}
/* Used by non-thermal clients to configure an ADC_TM channel */
int32_t adc_tm_channel_measure_gen3(struct adc5_chip *chip,
struct adc_tm_param *param)
{
int ret, i;
uint32_t v_channel, dt_index = 0;
bool chan_found = false;
if (param == NULL)
return -EINVAL;
if (param->threshold_notification == NULL) {
pr_debug("No notification for high/low temp\n");
return -EINVAL;
}
for (i = 0; i < chip->nchannels; i++) {
v_channel = V_CHAN(chip->chan_props[i]);
if (v_channel == param->channel) {
dt_index = i;
chan_found = true;
break;
}
}
if (!chan_found) {
pr_err("not a valid ADC_TM channel\n");
return -EINVAL;
}
mutex_lock(&chip->lock);
/* add channel client to channel list */
adc_tm_add_to_list(chip, dt_index, param);
/* set right thresholds for the sensor */
ret = adc_tm_gen3_manage_thresholds(&chip->chan_props[dt_index]);
if (ret < 0)
pr_err("Error in reverse scaling:%d\n", ret);
/* configure channel */
ret = adc_tm5_gen3_configure(&chip->chan_props[dt_index]);
if (ret < 0) {
pr_err("Error during adc-tm configure:%d\n", ret);
goto fail_unlock;
}
fail_unlock:
mutex_unlock(&chip->lock);
return ret;
}
EXPORT_SYMBOL_GPL(adc_tm_channel_measure_gen3);
/* Used by non-thermal clients to release an ADC_TM channel */
int32_t adc_tm_disable_chan_meas_gen3(struct adc5_chip *chip,
struct adc_tm_param *param)
{
int ret = 0, i;
uint32_t dt_index = 0, v_channel;
struct adc_tm_client_info *client_info = NULL;
if (param == NULL)
return -EINVAL;
for (i = 0; i < chip->nchannels; i++) {
v_channel = V_CHAN(chip->chan_props[i]);
if (v_channel == param->channel) {
dt_index = i;
break;
}
}
if (i == chip->nchannels) {
pr_err("not a valid ADC_TM channel\n");
return -EINVAL;
}
mutex_lock(&chip->lock);
list_for_each_entry(client_info,
&chip->chan_props[i].thr_list, list) {
if (client_info->param->id == param->id) {
client_info->state_request =
ADC_TM_HIGH_LOW_THR_DISABLE;
ret = adc_tm_gen3_manage_thresholds(&chip->chan_props[i]);
if (ret < 0) {
pr_err("Error in reverse scaling:%d\n",
ret);
goto fail;
}
ret = adc_tm5_gen3_configure(&chip->chan_props[i]);
if (ret < 0) {
pr_err("Error during adc-tm configure:%d\n",
ret);
goto fail;
}
}
}
fail:
mutex_unlock(&chip->lock);
return ret;
}
EXPORT_SYMBOL_GPL(adc_tm_disable_chan_meas_gen3);
static struct thermal_zone_device_ops adc_tm_ops = {
.get_temp = adc_tm_gen3_get_temp,
.set_trips = adc_tm5_gen3_set_trip_temp,
.set_trip_hyst = adc_tm5_gen3_set_trip_hyst,
};
static struct thermal_zone_device_ops adc_tm_ops_iio = {
.get_temp = adc_tm_gen3_get_temp,
.set_trip_hyst = adc_tm5_gen3_set_trip_hyst,
};
static int adc_tm_register_tzd(struct adc5_chip *adc)
{
unsigned int i, channel;
struct thermal_zone_device *tzd;
for (i = 0; i < adc->nchannels; i++) {
channel = V_CHAN(adc->chan_props[i]);
switch (adc->chan_props[i].adc_tm) {
case ADC_TM_NONE:
continue;
case ADC_TM:
tzd = devm_thermal_of_zone_register(
adc->dev, channel,
&adc->chan_props[i], &adc_tm_ops);
break;
case ADC_TM_IIO:
tzd = devm_thermal_of_zone_register(
adc->dev, channel,
&adc->chan_props[i], &adc_tm_ops_iio);
break;
case ADC_TM_NON_THERMAL:
tzd = NULL;
break;
default:
pr_err("Invalid ADC_TM type:%d for dt_ch:%d\n",
adc->chan_props[i].adc_tm, adc->chan_props[i].channel);
return -EINVAL;
}
if (IS_ERR(tzd)) {
pr_err("Error registering TZ zone:%ld for dt_ch:%d\n",
PTR_ERR(tzd), adc->chan_props[i].channel);
return PTR_ERR(tzd);
}
adc->chan_props[i].tzd = tzd;
}
return 0;
}
struct adc5_channels {
const char *datasheet_name;
unsigned int prescale_index;
enum iio_chan_type type;
long info_mask;
enum vadc_scale_fn_type scale_fn_type;
};
/* In these definitions, _pre refers to an index into adc5_prescale_ratios. */
#define ADC5_CHAN(_dname, _type, _mask, _pre, _scale) \
{ \
.datasheet_name = _dname, \
.prescale_index = _pre, \
.type = _type, \
.info_mask = _mask, \
.scale_fn_type = _scale, \
}, \
#define ADC5_CHAN_TEMP(_dname, _pre, _scale) \
ADC5_CHAN(_dname, IIO_TEMP, \
BIT(IIO_CHAN_INFO_PROCESSED), \
_pre, _scale) \
#define ADC5_CHAN_VOLT(_dname, _pre, _scale) \
ADC5_CHAN(_dname, IIO_VOLTAGE, \
BIT(IIO_CHAN_INFO_PROCESSED), \
_pre, _scale) \
#define ADC5_CHAN_CUR(_dname, _pre, _scale) \
ADC5_CHAN(_dname, IIO_CURRENT, \
BIT(IIO_CHAN_INFO_PROCESSED), \
_pre, _scale) \
static const struct adc5_channels adc5_chans_pmic[ADC5_MAX_CHANNEL] = {
[ADC5_GEN3_OFFSET_REF] = ADC5_CHAN_VOLT("ref_gnd", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN3_1P25VREF] = ADC5_CHAN_VOLT("vref_1p25", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN3_VPH_PWR] = ADC5_CHAN_VOLT("vph_pwr", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN3_VBAT_SNS_QBG] = ADC5_CHAN_VOLT("vbat_sns", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN3_AMUX3_THM] = ADC5_CHAN_TEMP("smb_temp", 9,
SCALE_HW_CALIB_PM7_SMB_TEMP)
[ADC5_GEN3_CHG_TEMP] = ADC5_CHAN_TEMP("chg_temp", 0,
SCALE_HW_CALIB_PM7_CHG_TEMP)
[ADC5_GEN3_USB_SNS_V_16] = ADC5_CHAN_TEMP("usb_sns_v_div_16", 8,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN3_VIN_DIV16_MUX] = ADC5_CHAN_TEMP("vin_div_16", 8,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN3_IIN_FB] = ADC5_CHAN_CUR("iin_fb", 10,
SCALE_HW_CALIB_CUR)
[ADC5_GEN3_ICHG_SMB] = ADC5_CHAN_CUR("ichg_smb", 13,
SCALE_HW_CALIB_CUR)
[ADC5_GEN3_IIN_SMB] = ADC5_CHAN_CUR("iin_smb", 12,
SCALE_HW_CALIB_CUR)
[ADC5_GEN3_ICHG_FB] = ADC5_CHAN_CUR("ichg_fb", 16,
SCALE_HW_CALIB_CUR_RAW)
[ADC5_GEN3_DIE_TEMP] = ADC5_CHAN_TEMP("die_temp", 0,
SCALE_HW_CALIB_PMIC_THERM_PM7)
[ADC5_GEN3_TEMP_ALARM_LITE] = ADC5_CHAN_TEMP("die_temp_lite", 0,
SCALE_HW_CALIB_PMIC_THERM_PM7)
[ADC5_GEN3_AMUX1_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm1_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX2_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm2_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX3_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm3_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX4_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm4_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX5_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm5_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX6_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm6_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX1_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux1_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX2_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux2_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX3_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux3_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN3_AMUX4_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux4_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
};
static const struct adc5_channels adc5_gen4_chans_pmic[ADC5_MAX_CHANNEL] = {
[ADC5_GEN4_OFFSET_REF] = ADC5_CHAN_VOLT("ref_gnd", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN4_1P25VREF] = ADC5_CHAN_VOLT("vref_1p25", 0,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN4_VPH_PWR] = ADC5_CHAN_VOLT("vph_pwr", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN4_VBAT_SNS_QBG] = ADC5_CHAN_VOLT("vbat_sns", 1,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN4_CHG_TEMP] = ADC5_CHAN_TEMP("chg_temp", 0,
SCALE_HW_CALIB_PM7_CHG_TEMP)
[ADC5_GEN4_USB_SNS_DIV20] = ADC5_CHAN_VOLT("usb_sns_div20", 4,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN4_VIN_DIV20_MUX] = ADC5_CHAN_VOLT("vin_div20", 4,
SCALE_HW_CALIB_DEFAULT)
[ADC5_GEN4_IIN] = ADC5_CHAN_CUR("iin", 10,
SCALE_HW_CALIB_CUR)
[ADC5_GEN4_ICHG_FB] = ADC5_CHAN_CUR("ichg_fb", 15,
SCALE_HW_CALIB_CUR)
[ADC5_GEN4_DIE_TEMP] = ADC5_CHAN_TEMP("die_temp", 0,
SCALE_HW_CALIB_PMIC_THERM_PM7)
[ADC5_GEN4_TEMP_ALARM_LITE] = ADC5_CHAN_TEMP("die_temp_lite", 0,
SCALE_HW_CALIB_PMIC_THERM_PM7)
[ADC5_GEN4_AMUX1_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm1_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX2_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm2_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX3_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm3_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX4_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm4_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX5_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm5_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX6_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm6_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX1_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux1_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX2_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux2_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX3_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux3_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX4_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux4_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
[ADC5_GEN4_AMUX5_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux5_gpio_pu2", 0,
SCALE_HW_CALIB_THERM_100K_PU_PM7)
};
static const struct adc5_data adc5_gen3_data_pmic = {
.name = "pm-adc5-gen3",
.full_scale_code_volt = 0x70e4,
.full_scale_code_cur = 0x2ee0,
.full_scale_code_raw = 0x4000,
.adc_chans = adc5_chans_pmic,
.decimation = (unsigned int [ADC5_DECIMATION_SAMPLES_MAX])
{85, 340, 1360},
.hw_settle_1 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX])
{15, 100, 200, 300, 400, 500, 600, 700,
1000, 2000, 4000, 8000, 16000, 32000,
64000, 128000},
};
static const struct adc5_data adc5_gen4_data_pmic = {
.name = "pm-adc5-gen4",
.full_scale_code_volt = 0x70e4,
.full_scale_code_cur = 0x4e20,
.full_scale_code_raw = 0xffff,
.adc_chans = adc5_gen4_chans_pmic,
.decimation = (unsigned int [ADC5_DECIMATION_SAMPLES_MAX])
{85, 340, 1360},
.hw_settle_1 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX])
{15, 100, 200, 300, 400, 500, 600, 700,
1000, 2000, 4000, 8000, 16000, 32000,
64000, 128000},
};
static const struct of_device_id adc5_match_table[] = {
{
.compatible = "qcom,spmi-adc5-gen3",
.data = &adc5_gen3_data_pmic,
},
{ }
};
MODULE_DEVICE_TABLE(of, adc5_match_table);
static int adc5_get_dt_channel_data(struct adc5_chip *adc,
struct adc5_channel_prop *prop,
struct device_node *node,
const struct adc5_data *data)
{
const char *name = node->name, *channel_name;
u32 chan, value, varr[2];
u32 sid = 0;
int ret, val;
struct device *dev = adc->dev;
ret = of_property_read_u32(node, "reg", &chan);
if (ret < 0) {
dev_err(dev, "invalid channel number %s\n", name);
return ret;
}
if (of_property_read_bool(node, "qcom,adc5-gen4")) {
prop->generation = ADC5_GEN4;
prop->data = &adc5_gen4_data_pmic;
} else {
prop->generation = ADC5_GEN3;
prop->data = data;
}
/*
* Value read from "reg" is virtual channel number
* virtual channel number = (sid << 8 | channel number).
*/
sid = (chan >> ADC5_GEN3_SID_OFFSET);
chan = (chan & ADC5_GEN3_CHANNEL_MASK);
if (chan > ADC5_OFFSET_EXT2 ||
!prop->data->adc_chans[chan].datasheet_name) {
dev_err(dev, "%s invalid channel number %d\n", name, chan);
return -EINVAL;
}
/* the channel has DT description */
prop->channel = chan;
prop->sid = sid;
channel_name = of_get_property(node,
"label", NULL) ? : node->name;
if (!channel_name) {
pr_err("Invalid channel name\n");
return -EINVAL;
}
prop->datasheet_name = channel_name;
ret = of_property_read_u32(node, "qcom,decimation", &value);
if (!ret) {
ret = adc5_decimation_from_dt(value, data->decimation);
if (ret < 0) {
dev_err(dev, "%02x invalid decimation %d\n",
chan, value);
return ret;
}
prop->decimation = ret;
} else {
if (prop->generation == ADC5_GEN3)
prop->decimation = ADC5_DECIMATION_DEFAULT;
else
prop->decimation = ADC5_GEN4_DECIMATION_DEFAULT;
}
ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
if (!ret) {
ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]);
if (ret < 0) {
dev_err(dev, "%02x invalid pre-scaling <%d %d>\n",
chan, varr[0], varr[1]);
return ret;
}
prop->prescale = ret;
} else {
prop->prescale =
prop->data->adc_chans[prop->channel].prescale_index;
}
ret = of_property_read_u32(node, "qcom,hw-settle-time", &value);
if (!ret) {
ret = adc5_hw_settle_time_from_dt(value,
data->hw_settle_1);
if (ret < 0) {
dev_err(dev, "%02x invalid hw-settle-time %d us\n",
chan, value);
return ret;
}
prop->hw_settle_time = ret;
} else {
prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
}
ret = of_property_read_u32(node, "qcom,avg-samples", &value);
if (!ret) {
ret = adc5_avg_samples_from_dt(value);
if (ret < 0) {
dev_err(dev, "%02x invalid avg-samples %d\n",
chan, value);
return ret;
}
prop->avg_samples = ret;
} else {
prop->avg_samples = VADC_DEF_AVG_SAMPLES;
}
prop->scale_fn_type = -EINVAL;
ret = of_property_read_u32(node, "qcom,scale-fn-type", &value);
if (!ret && value < SCALE_HW_CALIB_INVALID)
prop->scale_fn_type = value;
if (of_property_read_bool(node, "qcom,ratiometric"))
prop->cal_method = ADC5_RATIOMETRIC_CAL;
else
prop->cal_method = ADC5_ABSOLUTE_CAL;
prop->timer = MEAS_INT_IMMEDIATE;
prop->adc_tm = ADC_TM_NONE;
ret = of_property_read_u32(node, "qcom,adc-tm-type", &value);
if (!ret && value < ADC_TM_INVALID)
prop->adc_tm = value;
if (prop->adc_tm == ADC_TM_NON_THERMAL) {
ret = of_property_read_u32(node, "qcom,rscale-type",
&prop->adc_rscale_fn);
if (ret < 0)
prop->adc_rscale_fn = SCALE_RSCALE_NONE;
}
if (prop->adc_tm && prop->adc_tm != ADC_TM_IIO) {
adc->n_tm_channels++;
if (adc->n_tm_channels > ((adc->num_sdams * 8) - 1)) {
pr_err("Number of TM nodes %u greater than channels supported:%u\n",
adc->n_tm_channels, (adc->num_sdams * 8) - 1);
return -EINVAL;
}
val = adc->n_tm_channels / 8;
prop->sdam_index = val;
prop->tm_chan_index = adc->n_tm_channels - (8*val);
prop->timer = MEAS_INT_1S;
if (prop->adc_tm == ADC_TM_NON_THERMAL) {
prop->req_wq = alloc_workqueue(
"adc_tm_notify_wq", WQ_HIGHPRI, 0);
if (!prop->req_wq) {
pr_err("Requesting priority wq failed\n");
return -ENOMEM;
}
INIT_WORK(&prop->work, notify_adc_tm_fn);
}
INIT_LIST_HEAD(&prop->thr_list);
}
dev_dbg(dev, "%02x name %s\n", chan, name);
return 0;
}
static int adc5_get_dt_data(struct adc5_chip *adc, struct device_node *node)
{
const struct adc5_channels *adc_chan;
struct iio_chan_spec *iio_chan;
struct adc5_channel_prop *chan_props;
struct device_node *child;
unsigned int index = 0;
const struct of_device_id *id;
const struct adc5_data *data;
int ret;
adc->nchannels = of_get_available_child_count(node);
if (!adc->nchannels)
return -EINVAL;
adc->iio_chans = devm_kcalloc(adc->dev, adc->nchannels,
sizeof(*adc->iio_chans), GFP_KERNEL);
if (!adc->iio_chans)
return -ENOMEM;
adc->chan_props = devm_kcalloc(adc->dev, adc->nchannels,
sizeof(*adc->chan_props), GFP_KERNEL);
if (!adc->chan_props)
return -ENOMEM;
chan_props = adc->chan_props;
adc->n_tm_channels = 0;
iio_chan = adc->iio_chans;
id = of_match_node(adc5_match_table, node);
if (id)
data = id->data;
else
data = &adc5_gen3_data_pmic;
for_each_available_child_of_node(node, child) {
ret = adc5_get_dt_channel_data(adc, chan_props, child, data);
if (ret < 0) {
of_node_put(child);
return ret;
}
chan_props->chip = adc;
if (chan_props->scale_fn_type == -EINVAL)
chan_props->scale_fn_type =
chan_props->data->adc_chans[chan_props->channel].scale_fn_type;
adc_chan = &chan_props->data->adc_chans[chan_props->channel];
iio_chan->channel = chan_props->channel;
iio_chan->datasheet_name = chan_props->datasheet_name;
iio_chan->extend_name = chan_props->datasheet_name;
iio_chan->info_mask_separate = adc_chan->info_mask;
iio_chan->type = adc_chan->type;
iio_chan->address = index;
iio_chan++;
chan_props++;
index++;
}
return 0;
}
static int adc5_gen3_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct adc5_chip *adc;
struct regmap *regmap;
int ret, i;
u32 reg;
char buf[20];
regmap = dev_get_regmap(dev->parent, NULL);
if (!regmap)
return -ENODEV;
indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
if (!indio_dev)
return -ENOMEM;
adc = iio_priv(indio_dev);
adc->regmap = regmap;
adc->dev = dev;
ret = of_property_count_u32_elems(node, "reg");
if (ret < 0)
return ret;
adc->num_sdams = ret;
adc->conv_err = devm_kcalloc(adc->dev, adc->num_sdams, sizeof(*adc->conv_err),
GFP_KERNEL);
if (!adc->conv_err)
return -ENOMEM;
ret = of_property_count_strings(node, "interrupt-names");
if (ret < 0)
adc->num_interrupts = 0;
else
adc->num_interrupts = ret;
if (adc->num_interrupts > adc->num_sdams) {
pr_err("Number of adc interrupts %u greater then number of sdams:%u\n",
adc->num_interrupts, adc->num_sdams);
return -EINVAL;
}
adc->base = devm_kcalloc(adc->dev, adc->num_sdams, sizeof(*adc->base), GFP_KERNEL);
if (!adc->base)
return -ENOMEM;
for (i = 0; i < adc->num_sdams; i++) {
ret = of_property_read_u32_index(node, "reg", i, &reg);
if (ret < 0)
return ret;
adc->base[i].base_addr = reg;
}
for (i = 0; i < adc->num_interrupts; i++) {
scnprintf(buf, sizeof(buf), "adc-sdam%d", i);
ret = of_irq_get_byname(node, buf);
if (ret < 0) {
pr_err("Failed to get irq for ADC5 GEN3 SDAM%d, ret=%d\n", i, ret);
return ret;
}
adc->base[i].irq = ret;
adc->base[i].irq_name = devm_kstrdup(adc->dev, buf, GFP_KERNEL);
if (!adc->base[i].irq_name)
return -ENOMEM;
}
if (!of_property_read_u32(node, "qcom,debug-base", &reg))
adc->debug_base = reg;
platform_set_drvdata(pdev, adc);
indio_dev->info = &adc5_gen3_info;
init_completion(&adc->complete);
mutex_init(&adc->lock);
spin_lock_init(&adc->tm_lock);
ret = adc5_get_dt_data(adc, node);
if (ret < 0) {
pr_err("adc get dt data failed\n");
goto fail;
}
for (i = 0; i < adc->num_interrupts; i++) {
ret = devm_request_irq(dev, adc->base[i].irq, adc5_gen3_isr,
0, adc->base[i].irq_name, adc);
if (ret < 0)
goto fail;
}
ret = adc_tm_register_tzd(adc);
if (ret < 0)
goto fail;
if (adc->n_tm_channels) {
INIT_WORK(&adc->tm_handler_work, tm_handler_work);
INIT_WORK(&adc->tm_err_handler_work, tm_err_handler_work);
}
indio_dev->dev.parent = dev;
indio_dev->dev.of_node = node;
indio_dev->name = pdev->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adc->iio_chans;
indio_dev->num_channels = adc->nchannels;
list_add_tail(&adc->list, &adc_tm_device_list);
adc->device_list = &adc_tm_device_list;
adc->ipc_log = ipc_log_context_create(10, "adc5-gen3", 0);
if (!adc->ipc_log)
pr_warn("Error in creating ipc_log for adc5-gen3\n");
return devm_iio_device_register(dev, indio_dev);
fail:
i = 0;
while (i < adc->nchannels) {
if (adc->chan_props[i].req_wq)
destroy_workqueue(adc->chan_props[i].req_wq);
i++;
}
return ret;
}
static int adc5_gen3_exit(struct platform_device *pdev)
{
struct adc5_chip *adc = platform_get_drvdata(pdev);
u8 data = 0;
int i, sdam_index;
mutex_lock(&adc->lock);
for (i = 0; i < adc->nchannels; i++) {
if (adc->chan_props[i].req_wq)
destroy_workqueue(adc->chan_props[i].req_wq);
adc->chan_props[i].timer = MEAS_INT_DISABLE;
}
/* Disable all available channels */
for (i = 0; i < adc->num_sdams * 8; i++) {
sdam_index = i / 8;
data = MEAS_INT_DISABLE;
adc5_write(adc, sdam_index, ADC5_GEN3_TIMER_SEL, &data, 1);
/* To indicate there is an actual conversion request */
data = ADC5_GEN3_CHAN_CONV_REQ | (i - (sdam_index*8));
adc5_write(adc, sdam_index, ADC5_GEN3_PERPH_CH, &data, 1);
data = ADC5_GEN3_CONV_REQ_REQ;
adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &data, 1);
}
mutex_unlock(&adc->lock);
if (adc->n_tm_channels) {
cancel_work_sync(&adc->tm_err_handler_work);
cancel_work_sync(&adc->tm_handler_work);
}
mutex_destroy(&adc->lock);
list_del(&adc->list);
ipc_log_context_destroy(adc->ipc_log);
return 0;
}
static int __maybe_unused adc5_gen3_freeze(struct device *dev)
{
struct adc5_chip *adc = dev_get_drvdata(dev);
int i = 0;
mutex_lock(&adc->lock);
for (i = 0; i < adc->num_interrupts; i++)
devm_free_irq(dev, adc->base[i].irq, adc);
mutex_unlock(&adc->lock);
return 0;
}
static int __maybe_unused adc5_gen3_restore(struct device *dev)
{
struct adc5_chip *adc = dev_get_drvdata(dev);
int i = 0;
int ret = 0;
for (i = 0; i < adc->num_interrupts; i++) {
ret = devm_request_irq(dev, adc->base[i].irq, adc5_gen3_isr,
0, adc->base[i].irq_name, adc);
if (ret < 0)
return ret;
}
return ret;
}
static void adc5_gen3_shutdown(struct platform_device *pdev)
{
struct adc5_chip *adc = platform_get_drvdata(pdev);
u8 data = 0;
int i, sdam_index;
mutex_lock(&adc->lock);
for (i = 0; i < adc->num_interrupts; i++)
devm_free_irq(adc->dev, adc->base[i].irq, adc);
/* Disable all available channels */
for (i = 0; i < adc->num_sdams * 8; i++) {
sdam_index = i / 8;
data = MEAS_INT_DISABLE;
adc5_write(adc, sdam_index, ADC5_GEN3_TIMER_SEL, &data, 1);
/* To indicate there is an actual conversion request */
data = ADC5_GEN3_CHAN_CONV_REQ | (i - (sdam_index*8));
adc5_write(adc, sdam_index, ADC5_GEN3_PERPH_CH, &data, 1);
data = ADC5_GEN3_CONV_REQ_REQ;
adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &data, 1);
}
mutex_unlock(&adc->lock);
}
static const struct dev_pm_ops __maybe_unused adc5_gen3_pm_ops = {
.freeze = pm_ptr(adc5_gen3_freeze),
.restore = pm_ptr(adc5_gen3_restore),
};
static struct platform_driver adc5_gen3_driver = {
.driver = {
.name = "qcom-spmi-adc5-gen3",
.of_match_table = adc5_match_table,
.pm = pm_ptr(&adc5_gen3_pm_ops),
},
.probe = adc5_gen3_probe,
.shutdown = adc5_gen3_shutdown,
.remove = adc5_gen3_exit,
};
module_platform_driver(adc5_gen3_driver);
MODULE_ALIAS("platform:qcom-spmi-adc5-gen3");
MODULE_DESCRIPTION("Qualcomm Technologies Inc. PMIC5 Gen3 ADC driver");
MODULE_LICENSE("GPL");