Files
android_kernel_samsung_sm8750/drivers/soc/qcom/minidump_log.c
2025-08-12 22:16:57 +02:00

1539 lines
39 KiB
C
Executable File

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2017-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/cache.h>
#include <linux/freezer.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/thread_info.h>
#include <soc/qcom/minidump.h>
#include <asm/page.h>
#include <asm/memory.h>
#include <asm/sections.h>
#include <asm/stacktrace.h>
#include <linux/mm.h>
#include <linux/ratelimit.h>
#include <linux/notifier.h>
#include <linux/sizes.h>
#include <linux/sched/task.h>
#include <linux/suspend.h>
#include <linux/vmalloc.h>
#include <linux/panic_notifier.h>
#include "debug_symbol.h"
#include <linux/samsung/debug/sec_debug.h>
#ifdef CONFIG_QCOM_MINIDUMP_PSTORE
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_reserved_mem.h>
#endif
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_DUMP
#include <linux/bits.h>
#include <linux/sched/prio.h>
#include <linux/seq_buf.h>
#include <linux/debugfs.h>
#include <asm/memory.h>
#include <linux/sched/cputime.h>
#include "../../../kernel/sched/sched.h"
#include <linux/sched/walt.h>
#include <linux/kdebug.h>
#include <linux/thread_info.h>
#include <asm/ptrace.h>
#include <linux/uaccess.h>
#include <linux/percpu.h>
#include <linux/module.h>
#include <linux/cma.h>
#include <linux/dma-map-ops.h>
#include <linux/sched/clock.h>
#include <trace/hooks/cpufreq.h>
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT
#include <trace/hooks/debug.h>
#endif
#include "minidump_memory.h"
#endif
#include "../../../kernel/time/tick-internal.h"
#ifdef CONFIG_QCOM_DYN_MINIDUMP_STACK
#include <trace/events/sched.h>
#ifdef CONFIG_VMAP_STACK
#define STACK_NUM_PAGES (THREAD_SIZE / PAGE_SIZE)
#else
#define STACK_NUM_PAGES 1
#endif /* !CONFIG_VMAP_STACK */
struct md_stack_cpu_data {
int stack_mdidx[STACK_NUM_PAGES];
struct md_region stack_mdr[STACK_NUM_PAGES];
} ____cacheline_aligned_in_smp;
static int md_current_stack_init __read_mostly;
static DEFINE_PER_CPU_SHARED_ALIGNED(struct md_stack_cpu_data, md_stack_data);
struct md_suspend_context_data {
int task_mdno;
int stack_mdidx[STACK_NUM_PAGES];
struct md_region stack_mdr[STACK_NUM_PAGES];
struct md_region task_mdr;
bool init;
};
static struct md_suspend_context_data md_suspend_context;
#endif
static bool is_vmap_stack __read_mostly;
#ifdef CONFIG_QCOM_MINIDUMP_FTRACE
#include <trace/hooks/ftrace_dump.h>
#include <linux/ring_buffer.h>
#include <linux/trace_seq.h>
#define MD_FTRACE_BUF_SIZE SZ_2M
static char *md_ftrace_buf_addr;
static size_t md_ftrace_buf_current;
static bool minidump_ftrace_in_oops;
static bool minidump_ftrace_dump = true;
#endif
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_DUMP
/* Rnqueue information */
#ifndef CONFIG_MINIDUMP_ALL_TASK_INFO
#define MD_RUNQUEUE_PAGES 8
#else
#define MD_RUNQUEUE_PAGES 150
#endif
static bool md_in_oops_handler;
static atomic_t md_handle_done;
static struct seq_buf *md_runq_seq_buf;
static int md_align_offset;
/* CPU context information */
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT
#define MD_CPU_CNTXT_PAGES 32
static int die_cpu = -1;
static struct seq_buf *md_cntxt_seq_buf;
static DEFINE_PER_CPU(struct pt_regs, regs_before_stop);
#endif
#define MD_KTASK_STACK_PAGES 64
static struct seq_buf *md_ktask_stack_buf;
/* Modules information */
#ifdef CONFIG_MODULES
#define MD_MODULE_PAGES 8
static struct seq_buf *md_mod_info_seq_buf;
static DEFINE_SPINLOCK(md_modules_lock);
static int n_modump;
static char *key_modules[10];
module_param_array(key_modules, charp, &n_modump, 0644);
#endif /* CONFIG_MODULES */
#endif
static bool stack_dump;
module_param(stack_dump, bool, 0644);
#define FREQ_LOG_MAX 10
static int register_stack_entry(struct md_region *ksp_entry, u64 sp, u64 size)
{
struct page *sp_page;
int entry;
ksp_entry->virt_addr = sp;
ksp_entry->size = size;
if (is_vmap_stack) {
sp_page = vmalloc_to_page((const void *) sp);
ksp_entry->phys_addr = page_to_phys(sp_page);
} else {
ksp_entry->phys_addr = virt_to_phys((uintptr_t *)sp);
}
entry = msm_minidump_add_region(ksp_entry);
if (entry < 0)
printk_deferred("Failed to add stack of entry %s in Minidump\n",
ksp_entry->name);
return entry;
}
static void register_kernel_sections(void)
{
struct md_region ksec_entry;
char *data_name = "KDATABSS";
char *rodata_name = "KROAIDATA";
size_t static_size;
void __percpu *base;
unsigned int cpu;
void *_sdata, *__bss_stop;
void *start_ro, *end_ro;
_sdata = DEBUG_SYMBOL_LOOKUP(_sdata);
__bss_stop = DEBUG_SYMBOL_LOOKUP(__bss_stop);
base = DEBUG_SYMBOL_LOOKUP(__per_cpu_start);
static_size = (size_t)(DEBUG_SYMBOL_LOOKUP(__per_cpu_end) - base);
strscpy(ksec_entry.name, data_name, sizeof(ksec_entry.name));
ksec_entry.virt_addr = (u64)_sdata;
ksec_entry.phys_addr = virt_to_phys(_sdata);
ksec_entry.size = roundup((__bss_stop - _sdata), 4);
if (msm_minidump_add_region(&ksec_entry) < 0)
pr_err("Failed to add data section in Minidump\n");
start_ro = DEBUG_SYMBOL_LOOKUP(__start_ro_after_init);
end_ro = DEBUG_SYMBOL_LOOKUP(__end_ro_after_init);
strscpy(ksec_entry.name, rodata_name, sizeof(ksec_entry.name));
ksec_entry.virt_addr = (uintptr_t)start_ro;
ksec_entry.phys_addr = virt_to_phys(start_ro);
ksec_entry.size = roundup((end_ro - start_ro), 4);
if (msm_minidump_add_region(&ksec_entry) < 0)
pr_err("Failed to add rodata section in Minidump\n");
/* Add percpu static sections */
for_each_possible_cpu(cpu) {
void *start = per_cpu_ptr(base, cpu);
memset(&ksec_entry, 0, sizeof(ksec_entry));
scnprintf(ksec_entry.name, sizeof(ksec_entry.name),
"KSPERCPU%d", cpu);
ksec_entry.virt_addr = (uintptr_t)start;
ksec_entry.phys_addr = per_cpu_ptr_to_phys(start);
ksec_entry.size = static_size;
if (msm_minidump_add_region(&ksec_entry) < 0)
pr_err("Failed to add percpu sections in Minidump\n");
}
}
static inline bool in_stack_range(
u64 sp, u64 base_addr, unsigned int stack_size)
{
u64 min_addr = base_addr;
u64 max_addr = base_addr + stack_size;
return (min_addr <= sp && sp < max_addr);
}
static unsigned int calculate_copy_pages(u64 sp, struct vm_struct *stack_area)
{
u64 tsk_stack_base = (u64) stack_area->addr;
u64 offset;
unsigned int stack_pages, copy_pages;
if (in_stack_range(sp, tsk_stack_base, get_vm_area_size(stack_area))) {
offset = sp - tsk_stack_base;
stack_pages = get_vm_area_size(stack_area) / PAGE_SIZE;
copy_pages = stack_pages - (offset / PAGE_SIZE);
} else {
copy_pages = 0;
}
return copy_pages;
}
void dump_stack_minidump(u64 sp)
{
struct md_region ksp_entry, ktsk_entry;
u32 cpu = smp_processor_id();
struct vm_struct *stack_vm_area;
unsigned int i, copy_pages;
if (IS_ENABLED(CONFIG_QCOM_DYN_MINIDUMP_STACK) || !stack_dump)
return;
if (is_idle_task(current))
return;
is_vmap_stack = IS_ENABLED(CONFIG_VMAP_STACK);
if (sp < KIMAGE_VADDR || sp > -256UL)
sp = current_stack_pointer;
/*
* Since stacks are now allocated with vmalloc, the translation to
* physical address is not a simple linear transformation like it is
* for kernel logical addresses, since vmalloc creates a virtual
* mapping. Thus, virt_to_phys() should not be used in this context;
* instead the page table must be walked to acquire the physical
* address of one page of the stack.
*/
stack_vm_area = task_stack_vm_area(current);
if (is_vmap_stack) {
sp &= ~(PAGE_SIZE - 1);
copy_pages = calculate_copy_pages(sp, stack_vm_area);
for (i = 0; i < copy_pages; i++) {
scnprintf(ksp_entry.name, sizeof(ksp_entry.name),
"KSTACK%d_%d", cpu, i);
(void)register_stack_entry(&ksp_entry, sp, PAGE_SIZE);
sp += PAGE_SIZE;
}
} else {
sp &= ~(THREAD_SIZE - 1);
scnprintf(ksp_entry.name, sizeof(ksp_entry.name), "KSTACK%d",
cpu);
(void)register_stack_entry(&ksp_entry, sp, THREAD_SIZE);
}
scnprintf(ktsk_entry.name, sizeof(ktsk_entry.name), "KTASK%d", cpu);
ktsk_entry.virt_addr = (u64)current;
ktsk_entry.phys_addr = virt_to_phys((uintptr_t *)current);
ktsk_entry.size = sizeof(struct task_struct);
if (msm_minidump_add_region(&ktsk_entry) < 0)
pr_err("Failed to add current task %d in Minidump\n", cpu);
}
#ifdef CONFIG_QCOM_DYN_MINIDUMP_STACK
static void update_stack_entry(struct md_region *ksp_entry, u64 sp,
int mdno)
{
struct page *sp_page;
ksp_entry->virt_addr = sp;
if (likely(is_vmap_stack)) {
sp_page = vmalloc_to_page((const void *) sp);
ksp_entry->phys_addr = page_to_phys(sp_page);
} else {
ksp_entry->phys_addr = virt_to_phys((uintptr_t *)sp);
}
if (msm_minidump_update_region(mdno, ksp_entry) < 0) {
printk_deferred("Failed to update stack entry %s in minidump\n",
ksp_entry->name);
}
}
static void register_vmapped_stack(struct md_region *mdr, int *mdno,
u64 sp, char *name_str, bool update)
{
int i;
sp &= ~(PAGE_SIZE - 1);
for (i = 0; i < STACK_NUM_PAGES; i++) {
if (unlikely(!update)) {
scnprintf(mdr->name, sizeof(mdr->name), "%s_%d",
name_str, i);
*mdno = register_stack_entry(mdr, sp, PAGE_SIZE);
} else {
update_stack_entry(mdr, sp, *mdno);
}
sp += PAGE_SIZE;
mdr++;
mdno++;
}
}
static void register_normal_stack(struct md_region *mdr, int *mdno,
u64 sp, char *name_str, bool update)
{
sp &= ~(THREAD_SIZE - 1);
if (unlikely(!update)) {
scnprintf(mdr->name, sizeof(mdr->name), name_str);
*mdno = register_stack_entry(mdr, sp, THREAD_SIZE);
} else {
update_stack_entry(mdr, sp, *mdno);
}
}
static void update_md_stack(struct md_region *stack_mdr,
int *stack_mdno, u64 sp)
{
unsigned int i;
int *mdno;
if (likely(is_vmap_stack)) {
for (i = 0; i < STACK_NUM_PAGES; i++) {
mdno = stack_mdno + i;
if (unlikely(*mdno < 0))
return;
}
register_vmapped_stack(stack_mdr, stack_mdno, sp, NULL, true);
} else {
if (unlikely(*stack_mdno < 0))
return;
register_normal_stack(stack_mdr, stack_mdno, sp, NULL, true);
}
}
static void update_md_cpu_stack(struct task_struct *tsk, u32 cpu, u64 sp)
{
struct md_stack_cpu_data *md_stack_cpu_d = &per_cpu(md_stack_data, cpu);
if (is_idle_task(tsk) || !md_current_stack_init)
return;
update_md_stack(md_stack_cpu_d->stack_mdr,
md_stack_cpu_d->stack_mdidx, sp);
}
void md_current_stack_notifer(void *ignore, bool preempt,
struct task_struct *prev, struct task_struct *next,
unsigned int prev_state)
{
u32 cpu = task_cpu(next);
u64 sp = (u64)next->stack;
update_md_cpu_stack(next, cpu, sp);
}
void md_current_stack_ipi_handler(void *data)
{
u32 cpu = smp_processor_id();
struct vm_struct *stack_vm_area;
u64 sp = current_stack_pointer;
if (is_idle_task(current))
return;
if (likely(is_vmap_stack)) {
stack_vm_area = task_stack_vm_area(current);
sp = (u64)stack_vm_area->addr;
}
update_md_cpu_stack(current, cpu, sp);
}
static void update_md_current_task(struct md_region *mdr, int mdno)
{
mdr->virt_addr = (u64)current;
mdr->phys_addr = virt_to_phys((uintptr_t *)current);
if (msm_minidump_update_region(mdno, mdr) < 0)
pr_err("Failed to update %s current task in minidump\n",
mdr->name);
}
static void update_md_suspend_current_stack(void)
{
u64 sp = current_stack_pointer;
struct vm_struct *stack_vm_area;
if (likely(is_vmap_stack)) {
stack_vm_area = task_stack_vm_area(current);
sp = (u64)stack_vm_area->addr;
}
update_md_stack(md_suspend_context.stack_mdr,
md_suspend_context.stack_mdidx, sp);
}
static void update_md_suspend_current_task(void)
{
if (unlikely(md_suspend_context.task_mdno < 0))
return;
update_md_current_task(&md_suspend_context.task_mdr,
md_suspend_context.task_mdno);
}
static void update_md_suspend_currents(void)
{
if (!md_suspend_context.init)
return;
update_md_suspend_current_stack();
update_md_suspend_current_task();
}
static void register_current_stack(void)
{
int cpu;
u64 sp = current_stack_pointer;
struct md_stack_cpu_data *md_stack_cpu_d;
struct vm_struct *stack_vm_area;
char name_str[MAX_NAME_LENGTH];
/*
* Since stacks are now allocated with vmalloc, the translation to
* physical address is not a simple linear transformation like it is
* for kernel logical addresses, since vmalloc creates a virtual
* mapping. Thus, virt_to_phys() should not be used in this context;
* instead the page table must be walked to acquire the physical
* address of all pages of the stack.
*/
if (likely(is_vmap_stack)) {
stack_vm_area = task_stack_vm_area(current);
sp = (u64)stack_vm_area->addr;
}
for_each_possible_cpu(cpu) {
/*
* Let's register dummies for now,
* once system up and running, let the cpu update its currents.
*/
md_stack_cpu_d = &per_cpu(md_stack_data, cpu);
scnprintf(name_str, sizeof(name_str), "KSTACK%d", cpu);
if (is_vmap_stack)
register_vmapped_stack(md_stack_cpu_d->stack_mdr,
md_stack_cpu_d->stack_mdidx, sp,
name_str, false);
else
register_normal_stack(md_stack_cpu_d->stack_mdr,
md_stack_cpu_d->stack_mdidx, sp,
name_str, false);
}
register_trace_sched_switch(md_current_stack_notifer, NULL);
md_current_stack_init = 1;
smp_call_function(md_current_stack_ipi_handler, NULL, 1);
}
static void register_suspend_stack(void)
{
char name_str[MAX_NAME_LENGTH];
u64 sp = current_stack_pointer;
struct vm_struct *stack_vm_area = task_stack_vm_area(current);
scnprintf(name_str, sizeof(name_str), "KSUSPSTK");
if (is_vmap_stack) {
sp = (u64)stack_vm_area->addr;
register_vmapped_stack(md_suspend_context.stack_mdr,
md_suspend_context.stack_mdidx,
sp, name_str, false);
} else {
register_normal_stack(md_suspend_context.stack_mdr,
md_suspend_context.stack_mdidx,
sp, name_str, false);
}
}
static void register_current_task(struct md_region *mdr, int *mdno,
char *name_str)
{
scnprintf(mdr->name, sizeof(mdr->name), name_str);
mdr->virt_addr = (u64)current;
mdr->phys_addr = virt_to_phys((uintptr_t *)current);
mdr->size = sizeof(struct task_struct);
*mdno = msm_minidump_add_region(mdr);
if (*mdno < 0)
pr_err("Failed to add current task %s in Minidump\n",
mdr->name);
}
static void register_suspend_current_task(void)
{
char name_str[MAX_NAME_LENGTH];
scnprintf(name_str, sizeof(name_str), "KSUSPTASK");
register_current_task(&md_suspend_context.task_mdr,
&md_suspend_context.task_mdno, name_str);
}
static int minidump_pm_notifier(struct notifier_block *nb,
unsigned long event, void *unused)
{
switch (event) {
case PM_SUSPEND_PREPARE:
update_md_suspend_currents();
break;
}
return NOTIFY_DONE;
}
static struct notifier_block minidump_pm_nb = {
.notifier_call = minidump_pm_notifier,
};
static void register_suspend_context(void)
{
register_suspend_stack();
register_suspend_current_task();
register_pm_notifier(&minidump_pm_nb);
md_suspend_context.init = true;
}
#endif
#ifdef CONFIG_ARM64
static void register_irq_stack(void)
{
int cpu;
unsigned int i;
int irq_stack_pages_count;
u64 irq_stack_base;
struct md_region irq_sp_entry;
u64 sp;
u64 *irq_stack_ptr = DEBUG_SYMBOL_LOOKUP(irq_stack_ptr);
for_each_possible_cpu(cpu) {
irq_stack_base = *(u64 *)(per_cpu_ptr((void *)irq_stack_ptr, cpu));
if (is_vmap_stack) {
irq_stack_pages_count = IRQ_STACK_SIZE / PAGE_SIZE;
sp = irq_stack_base & ~(PAGE_SIZE - 1);
for (i = 0; i < irq_stack_pages_count; i++) {
scnprintf(irq_sp_entry.name,
sizeof(irq_sp_entry.name),
"KISTK%d_%d", cpu, i);
register_stack_entry(&irq_sp_entry, sp,
PAGE_SIZE);
sp += PAGE_SIZE;
}
} else {
sp = irq_stack_base;
scnprintf(irq_sp_entry.name, sizeof(irq_sp_entry.name),
"KISTK%d", cpu);
register_stack_entry(&irq_sp_entry, sp, IRQ_STACK_SIZE);
}
}
}
#else
static inline void register_irq_stack(void) {}
#endif
#ifdef CONFIG_QCOM_MINIDUMP_FTRACE
static void minidump_add_trace_event(char *buf, size_t size)
{
char *addr;
if (!READ_ONCE(md_ftrace_buf_addr) ||
(size > (size_t)MD_FTRACE_BUF_SIZE))
return;
if ((md_ftrace_buf_current + size) > (size_t)MD_FTRACE_BUF_SIZE)
md_ftrace_buf_current = 0;
addr = md_ftrace_buf_addr + md_ftrace_buf_current;
memcpy(addr, buf, size);
md_ftrace_buf_current += size;
}
static void md_trace_oops_enter(void *unused, bool *enter_check)
{
if (!minidump_ftrace_in_oops) {
minidump_ftrace_in_oops = true;
*enter_check = false;
} else {
*enter_check = true;
}
}
static void md_trace_oops_exit(void *unused, bool *exit_check)
{
minidump_ftrace_in_oops = false;
}
static void md_update_trace_fmt(void *unused, bool *format_check)
{
*format_check = false;
}
static void md_buf_size_check(void *unused, unsigned long buffer_size,
bool *size_check)
{
if (!minidump_ftrace_dump) {
*size_check = true;
return;
}
if (buffer_size > (SZ_256K + PAGE_SIZE)) {
pr_err("Skip md ftrace buffer dump for: %#lx\n", buffer_size);
minidump_ftrace_dump = false;
*size_check = true;
}
}
static void md_dump_trace_buf(void *unused, struct trace_seq *trace_buf,
bool *printk_check)
{
if (minidump_ftrace_in_oops && minidump_ftrace_dump) {
minidump_add_trace_event(trace_buf->buffer,
trace_buf->seq.len);
*printk_check = false;
}
}
static void md_register_trace_buf(void)
{
struct md_region md_entry;
void *buffer_start;
buffer_start = kzalloc(MD_FTRACE_BUF_SIZE, GFP_KERNEL);
if (!buffer_start)
return;
strscpy(md_entry.name, "KFTRACE", sizeof(md_entry.name));
md_entry.virt_addr = (uintptr_t)buffer_start;
md_entry.phys_addr = virt_to_phys(buffer_start);
md_entry.size = MD_FTRACE_BUF_SIZE;
if (msm_minidump_add_region(&md_entry) < 0)
pr_err("Failed to add ftrace buffer entry in Minidump\n");
register_trace_android_vh_ftrace_oops_enter(md_trace_oops_enter,
NULL);
register_trace_android_vh_ftrace_oops_exit(md_trace_oops_exit,
NULL);
register_trace_android_vh_ftrace_size_check(md_buf_size_check,
NULL);
register_trace_android_vh_ftrace_format_check(md_update_trace_fmt,
NULL);
register_trace_android_vh_ftrace_dump_buffer(md_dump_trace_buf,
NULL);
/* Complete registration before adding enteries */
smp_mb();
WRITE_ONCE(md_ftrace_buf_addr, buffer_start);
}
#endif
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_DUMP
static void md_dump_align(void)
{
int tab_offset = md_align_offset;
while (tab_offset--)
seq_buf_printf(md_runq_seq_buf, " | ");
seq_buf_printf(md_runq_seq_buf, " |--");
}
static void md_dump_task_info(struct task_struct *task, char *status,
struct task_struct *curr)
{
struct sched_entity *se;
md_dump_align();
if (!task) {
seq_buf_printf(md_runq_seq_buf, "%s : None(0)\n", status);
return;
}
se = &task->se;
if (task == curr) {
seq_buf_printf(md_runq_seq_buf,
"[status: curr] pid: %d preempt: %#llx\n",
task_pid_nr(task),
task->thread_info.preempt_count);
return;
}
seq_buf_printf(md_runq_seq_buf,
"[status: %s] pid: %d\n",
status, task_pid_nr(task));
}
static void md_dump_cfs_rq(struct cfs_rq *cfs, struct task_struct *curr);
static void md_dump_cgroup_state(char *status, struct sched_entity *se_p,
struct task_struct *curr)
{
struct task_struct *task;
struct cfs_rq *my_q = NULL;
unsigned int nr_running;
if (!se_p) {
md_dump_task_info(NULL, status, NULL);
return;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
my_q = se_p->my_q;
#endif
if (!my_q) {
task = container_of(se_p, struct task_struct, se);
md_dump_task_info(task, status, curr);
return;
}
nr_running = my_q->nr_running;
md_dump_align();
seq_buf_printf(md_runq_seq_buf, "%s: %d process is grouping\n",
status, nr_running);
md_align_offset++;
md_dump_cfs_rq(my_q, curr);
md_align_offset--;
}
static void md_dump_cfs_node_func(struct rb_node *node,
struct task_struct *curr)
{
struct sched_entity *se_p = container_of(node, struct sched_entity,
run_node);
md_dump_cgroup_state("pend", se_p, curr);
}
static void md_rb_walk_cfs(struct rb_root_cached *rb_root_cached_p,
struct task_struct *curr)
{
int max_walk = 200; /* Bail out, in case of loop */
struct rb_node *leftmost = rb_root_cached_p->rb_leftmost;
struct rb_root *root = &rb_root_cached_p->rb_root;
struct rb_node *rb_node = rb_first(root);
if (!leftmost)
return;
while (rb_node && max_walk--) {
md_dump_cfs_node_func(rb_node, curr);
rb_node = rb_next(rb_node);
}
}
static void md_dump_cfs_rq(struct cfs_rq *cfs, struct task_struct *curr)
{
struct rb_root_cached *rb_root_cached_p = &cfs->tasks_timeline;
md_dump_cgroup_state("curr", cfs->curr, curr);
md_dump_cgroup_state("next", cfs->next, curr);
md_rb_walk_cfs(rb_root_cached_p, curr);
}
static void md_dump_rt_rq(struct rt_rq *rt_rq, struct task_struct *curr)
{
struct rt_prio_array *array = &rt_rq->active;
struct sched_rt_entity *rt_se;
int idx;
/* Lifted most of the below code from dump_throttled_rt_tasks() */
if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
return;
idx = sched_find_first_bit(array->bitmap);
while (idx < MAX_RT_PRIO) {
list_for_each_entry(rt_se, array->queue + idx, run_list) {
struct task_struct *p;
#ifdef CONFIG_RT_GROUP_SCHED
if (rt_se->my_q)
continue;
#endif
p = container_of(rt_se, struct task_struct, rt);
md_dump_task_info(p, "pend", curr);
}
idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
}
}
static const char * const task_state_array[] = {
"R", /* 0x00 */
"S", /* 0x01 */
"D", /* 0x02 */
"T", /* 0x04 */
"t", /* 0x08 */
"X", /* 0x10 */
"Z", /* 0x20 */
"P", /* 0x40 */
"I", /* 0x80 */
};
/* In line with task_state_index from fs/proc/array.c */
static inline unsigned int md_task_state_index(struct task_struct *tsk)
{
unsigned int tsk_state = READ_ONCE(tsk->__state);
unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
if (tsk_state == TASK_IDLE)
state = TASK_REPORT_IDLE;
return fls(state);
}
/* In line with get_task_state from fs/proc/array.c */
static inline const char *md_get_task_state(struct task_struct *tsk)
{
return task_state_array[md_task_state_index(tsk)];
}
static void md_dump_next_event(void)
{
int cpu;
struct tick_device *device_dump;
struct clock_event_device *event_dev;
device_dump = DEBUG_SYMBOL_LOOKUP(tick_cpu_device);
if (!device_dump)
return;
for_each_possible_cpu(cpu) {
event_dev = per_cpu(device_dump->evtdev, cpu);
if (event_dev)
pr_emerg("CPU%d next event is %lld\n", cpu,
event_dev->next_event);
else
pr_emerg("CPU%d next event is not available\n", cpu);
}
}
static void md_dump_runqueues(void)
{
int cpu;
struct rq *rq;
struct rt_rq *rt;
struct cfs_rq *cfs;
struct task_struct *p, *t;
#if IS_ENABLED(CONFIG_SCHED_WALT)
struct walt_task_struct *wts;
#endif
if (!md_runq_seq_buf)
return;
for_each_possible_cpu(cpu) {
rq = cpu_rq(cpu);
rt = &rq->rt;
cfs = &rq->cfs;
seq_buf_printf(md_runq_seq_buf,
"CPU%d has %d process, current is pid %d\n",
cpu, rq->nr_running, cpu_curr(cpu)->pid);
seq_buf_printf(md_runq_seq_buf,
"CFS has %d process\n",
cfs->nr_running);
md_dump_cfs_rq(cfs, cpu_curr(cpu));
seq_buf_printf(md_runq_seq_buf,
"RT has %d process\n",
rt->rt_nr_running);
md_dump_rt_rq(rt, cpu_curr(cpu));
seq_buf_printf(md_runq_seq_buf, "\n");
}
seq_buf_printf(md_runq_seq_buf, "%-15s", "Task name");
seq_buf_printf(md_runq_seq_buf, "%*s", 6, "PID");
seq_buf_printf(md_runq_seq_buf, "%*s", 16, "Exec_started_at");
seq_buf_printf(md_runq_seq_buf, "%*s", 16, "Last_queued_at");
seq_buf_printf(md_runq_seq_buf, "%*s", 16, "Total_wait_time");
seq_buf_printf(md_runq_seq_buf, "%*s", 12, "Exec_times");
seq_buf_printf(md_runq_seq_buf, "%*s", 4, "CPU");
seq_buf_printf(md_runq_seq_buf, "%*s", 5, "Prio");
seq_buf_printf(md_runq_seq_buf, "%*s", 6, "State");
#if IS_ENABLED(CONFIG_SCHED_WALT)
seq_buf_printf(md_runq_seq_buf, "%*s", 17, "Last_enqueued_ts");
seq_buf_printf(md_runq_seq_buf, "%*s", 16, "Last_sleep_ts");
#endif
seq_buf_printf(md_runq_seq_buf, "\n");
for_each_process_thread(p, t) {
#ifndef CONFIG_MINIDUMP_ALL_TASK_INFO
if (READ_ONCE(t->__state))
continue;
#endif
seq_buf_printf(md_runq_seq_buf, "%-15s", t->comm);
seq_buf_printf(md_runq_seq_buf, "%6d", t->pid);
seq_buf_printf(md_runq_seq_buf, "%16lld", t->sched_info.last_arrival);
seq_buf_printf(md_runq_seq_buf, "%16lld", t->sched_info.last_queued);
seq_buf_printf(md_runq_seq_buf, "%16lld", t->sched_info.run_delay);
seq_buf_printf(md_runq_seq_buf, "%12ld", t->sched_info.pcount);
seq_buf_printf(md_runq_seq_buf, "%4d", t->on_cpu);
seq_buf_printf(md_runq_seq_buf, "%5d", t->prio);
seq_buf_printf(md_runq_seq_buf, "%*s", 6, md_get_task_state(t));
#if IS_ENABLED(CONFIG_SCHED_WALT)
wts = (struct walt_task_struct *) t->android_vendor_data1;
seq_buf_printf(md_runq_seq_buf, "%17llu", wts->last_enqueued_ts);
seq_buf_printf(md_runq_seq_buf, "%16llu", wts->last_sleep_ts);
#endif
seq_buf_printf(md_runq_seq_buf, "\n");
}
}
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT
/*
* dump a block of kernel memory from around the given address.
* Bulk of the code is lifted from arch/arm64/kernel/proccess.c.
*/
static void md_dump_data(unsigned long addr, int nbytes, const char *name)
{
int i, j;
int nlines;
u32 *p;
/*
* don't attempt to dump non-kernel addresses or
* values that are probably just small negative numbers
*/
if (addr < PAGE_OFFSET || addr > -256UL)
return;
seq_buf_printf(md_cntxt_seq_buf, "\n%s: %#lx:\n", name, addr);
/*
* round address down to a 32 bit boundary
* and always dump a multiple of 32 bytes
*/
p = (u32 *)(addr & ~(sizeof(u32) - 1));
nbytes += (addr & (sizeof(u32) - 1));
nlines = (nbytes + 31) / 32;
for (i = 0; i < nlines; i++) {
/*
* just display low 16 bits of address to keep
* each line of the dump < 80 characters
*/
seq_buf_printf(md_cntxt_seq_buf, "%04lx ",
(unsigned long)p & 0xffff);
for (j = 0; j < 8; j++) {
u32 data = 0;
if (get_kernel_nofault(data, p))
seq_buf_printf(md_cntxt_seq_buf, " ********");
else
seq_buf_printf(md_cntxt_seq_buf, " %08x", data);
++p;
}
seq_buf_printf(md_cntxt_seq_buf, "\n");
}
}
static void md_reg_context_data(struct pt_regs *regs)
{
int nbytes = 128;
if (user_mode(regs) || !regs->pc)
return;
md_dump_data(regs->pc - nbytes, nbytes * 2, "PC");
md_dump_data(regs->regs[30] - nbytes, nbytes * 2, "LR");
md_dump_data(regs->sp - nbytes, nbytes * 2, "SP");
}
static inline void md_dump_panic_regs(void)
{
struct pt_regs regs;
u64 tmp1, tmp2;
/* Lifted from crash_setup_regs() */
__asm__ __volatile__ (
"stp x0, x1, [%2, #16 * 0]\n"
"stp x2, x3, [%2, #16 * 1]\n"
"stp x4, x5, [%2, #16 * 2]\n"
"stp x6, x7, [%2, #16 * 3]\n"
"stp x8, x9, [%2, #16 * 4]\n"
"stp x10, x11, [%2, #16 * 5]\n"
"stp x12, x13, [%2, #16 * 6]\n"
"stp x14, x15, [%2, #16 * 7]\n"
"stp x16, x17, [%2, #16 * 8]\n"
"stp x18, x19, [%2, #16 * 9]\n"
"stp x20, x21, [%2, #16 * 10]\n"
"stp x22, x23, [%2, #16 * 11]\n"
"stp x24, x25, [%2, #16 * 12]\n"
"stp x26, x27, [%2, #16 * 13]\n"
"stp x28, x29, [%2, #16 * 14]\n"
"mov %0, sp\n"
"stp x30, %0, [%2, #16 * 15]\n"
"/* faked current PSTATE */\n"
"mrs %0, CurrentEL\n"
"mrs %1, SPSEL\n"
"orr %0, %0, %1\n"
"mrs %1, DAIF\n"
"orr %0, %0, %1\n"
"mrs %1, NZCV\n"
"orr %0, %0, %1\n"
/* pc */
"adr %1, 1f\n"
"1:\n"
"stp %1, %0, [%2, #16 * 16]\n"
: "=&r" (tmp1), "=&r" (tmp2)
: "r" (&regs)
: "memory"
);
seq_buf_printf(md_cntxt_seq_buf, "PANIC CPU : %d\n",
raw_smp_processor_id());
md_reg_context_data(&regs);
}
static void md_dump_other_cpus_context(void)
{
int cpu;
struct pt_regs regs;
for_each_possible_cpu(cpu) {
regs = per_cpu(regs_before_stop, cpu);
seq_buf_printf(md_cntxt_seq_buf, "\nSTOPPED CPU : %d\n", cpu);
md_reg_context_data(&regs);
}
}
static int md_die_context_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct die_args *args = (struct die_args *)data;
if (md_in_oops_handler)
return NOTIFY_DONE;
md_in_oops_handler = true;
if (!md_cntxt_seq_buf) {
md_in_oops_handler = false;
return NOTIFY_DONE;
}
die_cpu = raw_smp_processor_id();
seq_buf_printf(md_cntxt_seq_buf, "\nDIE CPU : %d\n", die_cpu);
md_reg_context_data(args->regs);
md_in_oops_handler = false;
return NOTIFY_DONE;
}
static struct notifier_block md_die_context_nb = {
.notifier_call = md_die_context_notify,
.priority = INT_MAX - 2, /* < msm watchdog die notifier */
};
static void md_ipi_stop(void *unused, struct pt_regs *regs)
{
unsigned int cpu = smp_processor_id();
per_cpu(regs_before_stop, cpu) = *regs;
dump_stack_minidump(regs->sp);
}
#endif
static bool dump_trace(void *arg, unsigned long where)
{
seq_buf_printf(md_ktask_stack_buf, "%pSb\n", (void *)where);
return true;
}
static void md_dump_ktask_stack(void)
{
struct task_struct *g, *t;
unsigned int state;
if (!md_ktask_stack_buf)
return;
for_each_process_thread(g, t) {
state = READ_ONCE(t->__state);
if ((state & TASK_UNINTERRUPTIBLE) && !(state & TASK_WAKEKILL)
&& !(state & TASK_NOLOAD))
seq_buf_printf(md_ktask_stack_buf,
"Task blocked for %ld seconds!",
(jiffies - t->last_switch_time) / HZ);
seq_buf_printf(md_ktask_stack_buf, "%d [%s]\n",
task_pid_nr(t), t->comm);
arch_stack_walk(dump_trace, NULL, t, NULL);
seq_buf_printf(md_ktask_stack_buf, "\n");
}
seq_buf_printf(md_ktask_stack_buf, "---ktask stack end---\n");
}
void md_dump_process(void)
{
if (md_in_oops_handler)
return;
if (!atomic_add_unless(&md_handle_done, 1, 1))
return;
md_in_oops_handler = true;
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT
if (!md_cntxt_seq_buf)
goto dump_rq;
if (raw_smp_processor_id() != die_cpu)
md_dump_panic_regs();
md_dump_other_cpus_context();
dump_rq:
#endif
md_dump_next_event();
md_dump_runqueues();
md_dump_ktask_stack();
md_dump_memory();
dump_stack_minidump(0);
md_in_oops_handler = false;
}
EXPORT_SYMBOL_GPL(md_dump_process);
static int md_panic_handler(struct notifier_block *this,
unsigned long event, void *ptr)
{
md_dump_process();
return NOTIFY_DONE;
}
static struct notifier_block md_panic_blk = {
.notifier_call = md_panic_handler,
.priority = INT_MAX - 3, /* < msm watchdog panic notifier */
};
static int md_register_minidump_entry(char *name, u64 virt_addr,
u64 phys_addr, u64 size)
{
struct md_region md_entry;
int ret;
strscpy(md_entry.name, name, sizeof(md_entry.name));
md_entry.virt_addr = virt_addr;
md_entry.phys_addr = phys_addr;
md_entry.size = size;
ret = msm_minidump_add_region(&md_entry);
if (ret < 0)
pr_err("Failed to add %s entry in Minidump\n", name);
return ret;
}
int md_register_panic_entries(int num_pages, char *name,
struct seq_buf **global_buf)
{
char *buf;
struct seq_buf *seq_buf_p;
int ret;
buf = kzalloc(num_pages * PAGE_SIZE, GFP_KERNEL);
if (!buf)
return -EINVAL;
seq_buf_p = kzalloc(sizeof(*seq_buf_p), GFP_KERNEL);
if (!seq_buf_p) {
ret = -EINVAL;
goto err_seq_buf;
}
ret = md_register_minidump_entry(name, (uintptr_t)buf,
virt_to_phys(buf),
num_pages * PAGE_SIZE);
if (ret < 0)
goto err_entry_reg;
seq_buf_init(seq_buf_p, buf, num_pages * PAGE_SIZE);
/* Complete registration before populating data */
smp_mb();
WRITE_ONCE(*global_buf, seq_buf_p);
return 0;
err_entry_reg:
kfree(seq_buf_p);
err_seq_buf:
kfree(buf);
return ret;
}
static void md_register_panic_data(void)
{
int ret;
ret = md_minidump_memory_init();
if (ret) {
pr_err("Failed to look up all minidump memory symbols, rc: %d\n", ret);
return;
}
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT
md_register_panic_entries(MD_CPU_CNTXT_PAGES, "KCNTXT",
&md_cntxt_seq_buf);
register_trace_android_vh_ipi_stop(md_ipi_stop, NULL);
#endif
md_register_panic_entries(MD_RUNQUEUE_PAGES, "KRUNQUEUE",
&md_runq_seq_buf);
md_register_panic_entries(MD_KTASK_STACK_PAGES, "KTASK_STACK",
&md_ktask_stack_buf);
}
static int register_vmap_mem(const char *name, void *virual_addr, size_t dump_len)
{
int to_dump;
u64 phys_addr;
char entry_name[12];
void *dump_addr = virual_addr;
int i = 0;
while (dump_len) {
to_dump = min(dump_len, PAGE_SIZE - offset_in_page(dump_addr));
phys_addr = page_to_phys(vmalloc_to_page((const void *)dump_addr));
snprintf(entry_name, sizeof(entry_name), "%d_%s", i, name);
md_register_minidump_entry(entry_name, (u64)dump_addr, phys_addr, to_dump);
dump_addr += to_dump;
dump_len -= to_dump;
i++;
}
return 0;
}
struct module_sect_attr {
struct bin_attribute battr;
unsigned long address;
};
struct module_sect_attrs {
struct attribute_group grp;
unsigned int nsections;
struct module_sect_attr attrs[];
};
static int md_module_process(struct module *mod)
{
int i;
bool is_key_module = false;
unsigned long sec_addr, base_addr;
unsigned long dump_start, dump_end;
for (i = 0; i < n_modump; i++) {
if (strcmp(key_modules[i], mod->name) == 0)
is_key_module = true;
}
if (md_mod_info_seq_buf) {
base_addr = (unsigned long)mod->mem[MOD_TEXT].base;
seq_buf_printf(md_mod_info_seq_buf, "name: %s, base: %lx",
mod->name, base_addr);
if (is_key_module) {
dump_start = (unsigned long)mod->mem[MOD_DATA].base;
dump_end = dump_start + mod->mem[MOD_DATA].size;
if (((dump_end - dump_start) / PAGE_SIZE) <
msm_minidump_get_available_region()) {
for (i = 0; i < mod->sect_attrs->nsections ; i++) {
sec_addr = mod->sect_attrs->attrs[i].address;
if (sec_addr >= dump_start && sec_addr < dump_end) {
seq_buf_printf(md_mod_info_seq_buf, ", %s: %lx",
mod->sect_attrs->attrs[i].battr.attr.name,
sec_addr);
}
}
register_vmap_mem(mod->name, (void *)dump_start,
(dump_end - dump_start));
} else
pr_err("Failed to dump module %s\n", mod->name);
}
seq_buf_printf(md_mod_info_seq_buf, "\n");
}
return 0;
}
static int md_module_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct module *mod = data;
spin_lock(&md_modules_lock);
if (mod->state == MODULE_STATE_LIVE)
md_module_process(mod);
spin_unlock(&md_modules_lock);
return 0;
}
static struct notifier_block md_module_nb = {
.notifier_call = md_module_notify,
};
static void md_register_module_data(void)
{
int ret;
struct module *module;
struct list_head *module_list;
ret = md_register_panic_entries(MD_MODULE_PAGES, "KMODULES",
&md_mod_info_seq_buf);
if (ret) {
pr_err("Failed to register minidump module buffer\n");
return;
}
seq_buf_printf(md_mod_info_seq_buf, "=== MODULE INFO ===\n");
ret = register_module_notifier(&md_module_nb);
if (ret) {
pr_err("Failed to register minidump module notifier\n");
return;
}
module_list = DEBUG_SYMBOL_LOOKUP(modules);
if (IS_ERR_OR_NULL(module_list))
return;
preempt_disable();
list_for_each_entry_rcu(module, module_list, list) {
if (module != THIS_MODULE)
md_module_process(module);
}
preempt_enable();
}
#endif /* CONFIG_QCOM_MINIDUMP_PANIC_DUMP */
struct freq_log {
uint64_t ktime;
uint64_t freq;
};
struct freq_hist {
uint32_t idx;
struct freq_log log[FREQ_LOG_MAX];
};
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPUFREQ_INFO
static int max_cluster;
static struct freq_hist *cpuclk_log;
static void log_cpu_freq(void *unused,
struct cpufreq_policy *policy,
unsigned int *target_freq,
unsigned int old_target_freq)
{
uint32_t index;
int cluster = topology_cluster_id(policy->cpu);
if (cluster > max_cluster)
return;
index = cpuclk_log[cluster].idx;
cpuclk_log[cluster].log[index].ktime = sched_clock();
cpuclk_log[cluster].log[index].freq = *target_freq;
cpuclk_log[cluster].idx = (index + 1) % FREQ_LOG_MAX;
}
static void register_cpufreq_log(void)
{
int cpu;
struct md_region md_entry;
size_t freq_hist_sz;
for_each_possible_cpu(cpu) {
if (topology_cluster_id(cpu) > max_cluster)
max_cluster = topology_cluster_id(cpu);
}
freq_hist_sz = sizeof(struct freq_hist) * (max_cluster + 1);
cpuclk_log = kzalloc(freq_hist_sz, GFP_KERNEL);
if (!cpuclk_log)
return;
strscpy(md_entry.name, "FREQ_LOG", sizeof(md_entry.name));
md_entry.virt_addr = (uintptr_t)cpuclk_log;
md_entry.phys_addr = virt_to_phys(cpuclk_log);
md_entry.size = freq_hist_sz;
if (msm_minidump_add_region(&md_entry) < 0)
pr_err("Failed to add %s in Minidump\n", md_entry.name);
register_trace_android_vh_cpufreq_resolve_freq(log_cpu_freq, NULL);
register_trace_android_vh_cpufreq_fast_switch(log_cpu_freq, NULL);
register_trace_android_vh_cpufreq_target(log_cpu_freq, NULL);
}
#else
static inline void register_cpufreq_log(void) {}
#endif /* CONFIG_QCOM_MINIDUMP_PANIC_CPUFREQ_INFO */
#ifdef CONFIG_QCOM_MINIDUMP_PSTORE
static void register_pstore_info(void)
{
int ret;
struct device_node *node, *tmp_node;
struct resource resource;
struct reserved_mem *rmem = NULL;
unsigned int size;
phys_addr_t paddr;
unsigned long total_size;
struct md_region md_entry;
node = tmp_node = of_find_compatible_node(NULL, NULL, "ramoops");
if (IS_ERR_OR_NULL(tmp_node)) {
node = of_find_compatible_node(NULL, NULL, "qcom,ramoops");
if (IS_ERR_OR_NULL(node)) {
pr_err("Failed to get ramoops node\n");
return;
}
tmp_node = of_parse_phandle(node, "memory-region", 0);
if (!tmp_node) {
pr_err("Failed to parse ramoops memory-region\n");
return;
}
}
ret = of_address_to_resource(tmp_node, 0, &resource);
if (ret) {
rmem = of_reserved_mem_lookup(tmp_node);
if (rmem) {
paddr = rmem->base;
total_size = rmem->size;
} else {
pr_err("Failed to get ramoops mem\n");
return;
}
} else {
paddr = resource.start;
total_size = resource_size(&resource);
}
ret = of_property_read_u32(node, "record-size", &size);
if (!ret && size > 0) {
strscpy(md_entry.name, "KDMESG", sizeof(md_entry.name));
md_entry.virt_addr = (uintptr_t)phys_to_virt(paddr);
md_entry.phys_addr = paddr;
md_entry.size = size;
if (msm_minidump_add_region(&md_entry) < 0)
pr_err("Failed to add dmesg in Minidump\n");
paddr += size;
}
ret = of_property_read_u32(node, "console-size", &size);
if (!ret && size > 0) {
strscpy(md_entry.name, "KCONSOLE", sizeof(md_entry.name));
md_entry.virt_addr = (uintptr_t)phys_to_virt(paddr);
md_entry.phys_addr = paddr;
md_entry.size = size;
if (msm_minidump_add_region(&md_entry) < 0)
pr_err("Failed to add console in Minidump\n");
paddr += size;
}
ret = of_property_read_u32(node, "ftrace-size", &size);
if (!ret && size > 0) {
strscpy(md_entry.name, "KFTRACE", sizeof(md_entry.name));
md_entry.virt_addr = (uintptr_t)phys_to_virt(paddr);
md_entry.phys_addr = paddr;
md_entry.size = size;
if (msm_minidump_add_region(&md_entry) < 0)
pr_err("Failed to add ftrace in Minidump\n");
paddr += size;
}
ret = of_property_read_u32(node, "pmsg-size", &size);
if (!ret && size > 0) {
strscpy(md_entry.name, "KPMSG", sizeof(md_entry.name));
md_entry.virt_addr = (uintptr_t)phys_to_virt(paddr);
md_entry.phys_addr = paddr;
md_entry.size = size;
if (msm_minidump_add_region(&md_entry) < 0)
pr_err("Failed to add pmsg in Minidump\n");
paddr += size;
}
}
#endif
/* NOTE: 'msm_minidump_log_init' is changed to the inlined function
* to check ss's debug levels.
*/
static inline int __msm_minidump_log_init(void)
{
register_kernel_sections();
is_vmap_stack = IS_ENABLED(CONFIG_VMAP_STACK);
register_irq_stack();
#ifdef CONFIG_QCOM_DYN_MINIDUMP_STACK
register_current_stack();
register_suspend_context();
#endif
#ifdef CONFIG_QCOM_MINIDUMP_PSTORE
register_pstore_info();
#endif
#ifdef CONFIG_QCOM_MINIDUMP_FTRACE
md_register_trace_buf();
#endif
register_cpufreq_log();
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_DUMP
md_register_module_data();
md_register_panic_data();
atomic_notifier_chain_register(&panic_notifier_list, &md_panic_blk);
#ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT
register_die_notifier(&md_die_context_nb);
#endif
#endif
return 0;
}
int msm_minidump_log_init(void)
{
if (!sec_debug_is_enabled())
return 0;
return __msm_minidump_log_init();
}