699 lines
19 KiB
C
Executable File
699 lines
19 KiB
C
Executable File
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Qualcomm ICE (Inline Crypto Engine) support.
|
|
*
|
|
* Copyright (c) 2013-2019, The Linux Foundation. All rights reserved.
|
|
* Copyright (c) 2019, Google LLC
|
|
* Copyright (c) 2023, Linaro Limited
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/firmware/qcom/qcom_scm.h>
|
|
|
|
#include <soc/qcom/ice.h>
|
|
#include <linux/qtee_shmbridge.h>
|
|
|
|
#define AES_256_XTS_KEY_SIZE 64
|
|
|
|
/*
|
|
* Wrapped key sizes from HWKm is different for different versions of
|
|
* HW. It is not expected to change again in the future.
|
|
*/
|
|
#define QCOM_ICE_HWKM_WRAPPED_KEY_SIZE(v) \
|
|
((v) == 1 ? 68 : 100)
|
|
|
|
/* QCOM ICE registers */
|
|
#define QCOM_ICE_REG_VERSION 0x0008
|
|
#define QCOM_ICE_REG_FUSE_SETTING 0x0010
|
|
#define QCOM_ICE_REG_BIST_STATUS 0x0070
|
|
#define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
|
|
#define QCOM_ICE_REG_CONTROL 0x0
|
|
#define QCOM_ICE_LUT_KEYS_CRYPTOCFG_R16 0x4040
|
|
|
|
/* QCOM ICE HWKM registers */
|
|
#define QTI_HWKM_ICE_RG_IPCAT_VERSION 0x0000
|
|
#define QCOM_ICE_REG_HWKM_TZ_KM_CTL 0x1000
|
|
#define QCOM_ICE_REG_HWKM_TZ_KM_STATUS 0x1004
|
|
#define QCOM_ICE_REG_HWKM_BANK0_BANKN_IRQ_STATUS 0x2008
|
|
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_0 0x5000
|
|
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_1 0x5004
|
|
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_2 0x5008
|
|
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_3 0x500C
|
|
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_4 0x5010
|
|
|
|
/* QCOM ICE HWKM BIST vals */
|
|
#define QCOM_ICE_HWKM_BIST_DONE_V1_VAL 0x14007
|
|
#define QCOM_ICE_HWKM_BIST_DONE_V2_VAL 0x287
|
|
|
|
/* QCOM ICE HWKM version*/
|
|
#define QCOM_ICE_HWKM_V2_0_0 0x02000000
|
|
#define QCOM_ICE_HWKM_V2_1_0 0x02010000
|
|
/* BIST ("built-in self-test") status flags */
|
|
#define QCOM_ICE_BIST_STATUS_MASK GENMASK(31, 28)
|
|
|
|
#define QCOM_ICE_FUSE_SETTING_MASK 0x1
|
|
#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
|
|
#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
|
|
|
|
#define QCOM_ICE_LUT_KEYS_CRYPTOCFG_OFFSET 0x80
|
|
|
|
#define QCOM_ICE_HWKM_REG_OFFSET 0x8000
|
|
#define HWKM_OFFSET(reg) ((reg) + QCOM_ICE_HWKM_REG_OFFSET)
|
|
|
|
#define qcom_ice_writel(engine, val, reg) \
|
|
writel((val), (engine)->base + (reg))
|
|
|
|
#define qcom_ice_readl(engine, reg) \
|
|
readl((engine)->base + (reg))
|
|
|
|
struct qcom_ice {
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
struct device_link *link;
|
|
|
|
struct clk *core_clk;
|
|
u8 hwkm_version;
|
|
bool use_hwkm;
|
|
bool hwkm_init_complete;
|
|
bool handle_clks;
|
|
};
|
|
|
|
union crypto_cfg {
|
|
__le32 regval;
|
|
struct {
|
|
u8 dusize;
|
|
u8 capidx;
|
|
u8 reserved;
|
|
u8 cfge;
|
|
};
|
|
};
|
|
|
|
static bool qcom_ice_check_supported(struct qcom_ice *ice)
|
|
{
|
|
u32 regval = qcom_ice_readl(ice, QCOM_ICE_REG_VERSION);
|
|
struct device *dev = ice->dev;
|
|
int major = FIELD_GET(GENMASK(31, 24), regval);
|
|
int minor = FIELD_GET(GENMASK(23, 16), regval);
|
|
int step = FIELD_GET(GENMASK(15, 0), regval);
|
|
|
|
/* For now this driver only supports ICE version 3 and 4. */
|
|
if (major != 3 && major != 4) {
|
|
dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
|
|
major, minor, step);
|
|
return false;
|
|
}
|
|
|
|
if (major >= 4 || (major == 3 && minor == 2 && step >= 1))
|
|
ice->hwkm_version = 2;
|
|
else if (major == 3 && minor == 2)
|
|
ice->hwkm_version = 1;
|
|
else
|
|
ice->hwkm_version = 0;
|
|
|
|
if (ice->hwkm_version == 0)
|
|
ice->use_hwkm = false;
|
|
|
|
dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
|
|
major, minor, step);
|
|
if (!ice->hwkm_version)
|
|
dev_dbg(dev, "QC ICE HWKM (Hardware Key Manager) not supported\n");
|
|
else
|
|
dev_dbg(dev, "QC ICE HWKM (Hardware Key Manager) version = %d\n",
|
|
ice->hwkm_version);
|
|
|
|
if (!ice->use_hwkm)
|
|
dev_dbg(dev, "QC ICE HWKM (Hardware Key Manager) not used");
|
|
|
|
/* If fuses are blown, ICE might not work in the standard way. */
|
|
regval = qcom_ice_readl(ice, QCOM_ICE_REG_FUSE_SETTING);
|
|
if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
|
|
QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
|
|
QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
|
|
dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void qcom_ice_low_power_mode_enable(struct qcom_ice *ice)
|
|
{
|
|
u32 regval;
|
|
|
|
regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL);
|
|
|
|
/* Enable low power mode sequence */
|
|
regval |= 0x7000;
|
|
qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
|
|
}
|
|
|
|
static void qcom_ice_optimization_enable(struct qcom_ice *ice)
|
|
{
|
|
u32 regval;
|
|
|
|
/* ICE Optimizations Enable Sequence */
|
|
regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL);
|
|
regval |= 0xd807100;
|
|
/* ICE HPG requires delay before writing */
|
|
udelay(5);
|
|
qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
|
|
udelay(5);
|
|
}
|
|
|
|
/*
|
|
* Wait until the ICE BIST (built-in self-test) has completed.
|
|
*
|
|
* This may be necessary before ICE can be used.
|
|
* Note that we don't really care whether the BIST passed or failed;
|
|
* we really just want to make sure that it isn't still running. This is
|
|
* because (a) the BIST is a FIPS compliance thing that never fails in
|
|
* practice, (b) ICE is documented to reject crypto requests if the BIST
|
|
* fails, so we needn't do it in software too, and (c) properly testing
|
|
* storage encryption requires testing the full storage stack anyway,
|
|
* and not relying on hardware-level self-tests.
|
|
*
|
|
* However, we still care about if HWKM BIST failed (when supported) as
|
|
* important functionality would fail later, so disable hwkm on failure.
|
|
*/
|
|
static int qcom_ice_wait_bist_status(struct qcom_ice *ice)
|
|
{
|
|
u32 regval;
|
|
u32 bist_done_val;
|
|
int err;
|
|
|
|
err = readl_poll_timeout(ice->base + QCOM_ICE_REG_BIST_STATUS,
|
|
regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
|
|
50, 5000);
|
|
if (err)
|
|
dev_err(ice->dev, "Timed out waiting for ICE self-test to complete\n");
|
|
|
|
if (ice->use_hwkm) {
|
|
bist_done_val = (ice->hwkm_version == 1) ?
|
|
QCOM_ICE_HWKM_BIST_DONE_V1_VAL :
|
|
QCOM_ICE_HWKM_BIST_DONE_V2_VAL;
|
|
if (qcom_ice_readl(ice,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_TZ_KM_STATUS)) !=
|
|
bist_done_val) {
|
|
dev_warn(ice->dev, "HWKM BIST error\n");
|
|
ice->use_hwkm = false;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void qcom_ice_enable_standard_mode(struct qcom_ice *ice)
|
|
{
|
|
u32 val = 0;
|
|
|
|
if (!ice->use_hwkm)
|
|
return;
|
|
|
|
/*
|
|
* When ICE is in standard (hwkm) mode, it supports HW wrapped
|
|
* keys, and when it is in legacy mode, it only supports standard
|
|
* (non HW wrapped) keys.
|
|
*
|
|
* Put ICE in standard mode, ICE defaults to legacy mode.
|
|
* Legacy mode - ICE HWKM slave not supported.
|
|
* Standard mode - ICE HWKM slave supported.
|
|
*
|
|
* Depending on the version of HWKM, it is controlled by different
|
|
* registers in ICE.
|
|
*/
|
|
if (ice->hwkm_version >= 2) {
|
|
val = qcom_ice_readl(ice, QCOM_ICE_REG_CONTROL);
|
|
val = val & 0xFFFFFFFE;
|
|
qcom_ice_writel(ice, val, QCOM_ICE_REG_CONTROL);
|
|
} else {
|
|
qcom_ice_writel(ice, 0x7,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_TZ_KM_CTL));
|
|
}
|
|
}
|
|
|
|
static void qcom_ice_hwkm_init(struct qcom_ice *ice)
|
|
{
|
|
if (!ice->use_hwkm)
|
|
return;
|
|
|
|
/* Disable CRC checks. This HWKM feature is not used. */
|
|
qcom_ice_writel(ice, 0x6,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_TZ_KM_CTL));
|
|
|
|
/*
|
|
* Give register bank of the HWKM slave access to read and modify
|
|
* the keyslots in ICE HWKM slave. Without this, trustzone will not
|
|
* be able to program keys into ICE.
|
|
*/
|
|
qcom_ice_writel(ice, 0xFFFFFFFF,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_BANK0_BBAC_0));
|
|
qcom_ice_writel(ice, 0xFFFFFFFF,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_BANK0_BBAC_1));
|
|
qcom_ice_writel(ice, 0xFFFFFFFF,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_BANK0_BBAC_2));
|
|
qcom_ice_writel(ice, 0xFFFFFFFF,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_BANK0_BBAC_3));
|
|
qcom_ice_writel(ice, 0xFFFFFFFF,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_BANK0_BBAC_4));
|
|
|
|
/* Clear HWKM response FIFO before doing anything */
|
|
qcom_ice_writel(ice, 0x8,
|
|
HWKM_OFFSET(QCOM_ICE_REG_HWKM_BANK0_BANKN_IRQ_STATUS));
|
|
|
|
ice->hwkm_init_complete = true;
|
|
}
|
|
|
|
int qcom_ice_enable(struct qcom_ice *ice)
|
|
{
|
|
int err;
|
|
|
|
qcom_ice_low_power_mode_enable(ice);
|
|
qcom_ice_optimization_enable(ice);
|
|
|
|
qcom_ice_enable_standard_mode(ice);
|
|
|
|
err = qcom_ice_wait_bist_status(ice);
|
|
if (err)
|
|
return err;
|
|
|
|
qcom_ice_hwkm_init(ice);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_ice_enable);
|
|
|
|
int qcom_ice_resume(struct qcom_ice *ice)
|
|
{
|
|
struct device *dev = ice->dev;
|
|
int err;
|
|
|
|
if (ice->handle_clks) {
|
|
err = clk_prepare_enable(ice->core_clk);
|
|
if (err) {
|
|
dev_err(dev, "failed to enable core clock (%d)\n",
|
|
err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
qcom_ice_enable_standard_mode(ice);
|
|
qcom_ice_hwkm_init(ice);
|
|
return qcom_ice_wait_bist_status(ice);
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_ice_resume);
|
|
|
|
int qcom_ice_suspend(struct qcom_ice *ice)
|
|
{
|
|
if (ice->handle_clks)
|
|
clk_disable_unprepare(ice->core_clk);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_ice_suspend);
|
|
|
|
/*
|
|
* HW dictates the internal mapping between the ICE and HWKM slots,
|
|
* which are different for different versions, make the translation
|
|
* here. For v1 however, the translation is done in trustzone.
|
|
*/
|
|
static int translate_hwkm_slot(struct qcom_ice *ice, int slot)
|
|
{
|
|
int offset = 0;
|
|
u32 hwkm_version = 0;
|
|
|
|
if (ice->hwkm_init_complete) {
|
|
hwkm_version = qcom_ice_readl(ice, HWKM_OFFSET(QTI_HWKM_ICE_RG_IPCAT_VERSION));
|
|
if (hwkm_version >= QCOM_ICE_HWKM_V2_0_0 && hwkm_version < QCOM_ICE_HWKM_V2_1_0)
|
|
offset = 10;
|
|
}
|
|
return (ice->hwkm_version == 1) ? slot : ((slot * 2) + offset);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_SCSI_UFS_CRYPTO_QTI) || IS_ENABLED(CONFIG_MMC_CRYPTO_QTI)
|
|
static int qcom_ice_program_wrapped_key(struct qcom_ice *ice,
|
|
const struct blk_crypto_key *key,
|
|
u8 data_unit_size, int slot)
|
|
{
|
|
int hwkm_slot;
|
|
int err;
|
|
union crypto_cfg cfg;
|
|
struct qtee_shm shm;
|
|
|
|
hwkm_slot = translate_hwkm_slot(ice, slot);
|
|
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
cfg.dusize = data_unit_size;
|
|
cfg.capidx = QCOM_SCM_ICE_CIPHER_AES_256_XTS;
|
|
cfg.cfge = 0x80;
|
|
|
|
/* Clear CFGE */
|
|
qcom_ice_writel(ice, 0x0, QCOM_ICE_LUT_KEYS_CRYPTOCFG_R16 +
|
|
QCOM_ICE_LUT_KEYS_CRYPTOCFG_OFFSET * slot);
|
|
|
|
/*
|
|
* The following logic for shmbridge will be taken care in SCM driver
|
|
* in upstream. For now, handle it in the ICE driver downstream until
|
|
* wrapped key upstream effort is complete.
|
|
*/
|
|
err = qtee_shmbridge_allocate_shm(key->size, &shm);
|
|
if (err)
|
|
return -ENOMEM;
|
|
|
|
memcpy(shm.vaddr, key->raw, key->size);
|
|
qtee_shmbridge_flush_shm_buf(&shm);
|
|
|
|
/* Call trustzone to program the wrapped key using hwkm */
|
|
err = qcom_scm_config_set_ice_key(hwkm_slot, shm.paddr, key->size,
|
|
0, 0, 0);
|
|
if (err) {
|
|
pr_err("%s:SCM call Error: 0x%x slot %d\n", __func__, err,
|
|
slot);
|
|
return err;
|
|
}
|
|
|
|
/* Enable CFGE after programming key */
|
|
qcom_ice_writel(ice, cfg.regval, QCOM_ICE_LUT_KEYS_CRYPTOCFG_R16 +
|
|
QCOM_ICE_LUT_KEYS_CRYPTOCFG_OFFSET * slot);
|
|
|
|
qtee_shmbridge_inv_shm_buf(&shm);
|
|
qtee_shmbridge_free_shm(&shm);
|
|
return err;
|
|
}
|
|
|
|
int qcom_ice_program_key_hwkm(struct qcom_ice *ice,
|
|
u8 algorithm_id, u8 key_size,
|
|
const struct blk_crypto_key *bkey,
|
|
u8 data_unit_size, int slot)
|
|
{
|
|
struct device *dev = ice->dev;
|
|
int err = 0;
|
|
|
|
/* Only AES-256-XTS has been tested so far. */
|
|
if (algorithm_id != QCOM_ICE_CRYPTO_ALG_AES_XTS ||
|
|
(key_size != QCOM_ICE_CRYPTO_KEY_SIZE_256 &&
|
|
key_size != QCOM_ICE_CRYPTO_KEY_SIZE_WRAPPED)) {
|
|
dev_err_ratelimited(dev,
|
|
"Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
|
|
algorithm_id, key_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (bkey->crypto_cfg.key_type == BLK_CRYPTO_KEY_TYPE_HW_WRAPPED) {
|
|
if (!ice->use_hwkm)
|
|
return -EINVAL;
|
|
err = qcom_ice_program_wrapped_key(ice, bkey, data_unit_size,
|
|
slot);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_ice_program_key_hwkm);
|
|
|
|
#endif
|
|
|
|
int qcom_ice_program_key(struct qcom_ice *ice,
|
|
u8 algorithm_id, u8 key_size,
|
|
const u8 crypto_key[], u8 data_unit_size,
|
|
int slot)
|
|
{
|
|
struct device *dev = ice->dev;
|
|
union {
|
|
u8 bytes[AES_256_XTS_KEY_SIZE];
|
|
u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
|
|
} key;
|
|
int i;
|
|
int err;
|
|
|
|
/* Only AES-256-XTS has been tested so far. */
|
|
if (algorithm_id != QCOM_ICE_CRYPTO_ALG_AES_XTS ||
|
|
key_size != QCOM_ICE_CRYPTO_KEY_SIZE_256) {
|
|
dev_err_ratelimited(dev,
|
|
"Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
|
|
algorithm_id, key_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(key.bytes, crypto_key, AES_256_XTS_KEY_SIZE);
|
|
|
|
/* The SCM call requires that the key words are encoded in big endian */
|
|
for (i = 0; i < ARRAY_SIZE(key.words); i++)
|
|
__cpu_to_be32s(&key.words[i]);
|
|
|
|
err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
|
|
QCOM_SCM_ICE_CIPHER_AES_256_XTS,
|
|
data_unit_size);
|
|
|
|
memzero_explicit(&key, sizeof(key));
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_ice_program_key);
|
|
|
|
int qcom_ice_evict_key(struct qcom_ice *ice, int slot)
|
|
{
|
|
int hwkm_slot = slot;
|
|
|
|
if (ice->use_hwkm) {
|
|
hwkm_slot = translate_hwkm_slot(ice, slot);
|
|
/*
|
|
* Ignore calls to evict key when HWKM is supported and hwkm init
|
|
* is not yet done. This is to avoid the clearing all slots call
|
|
* during a storage reset when ICE is still in legacy mode. HWKM slave
|
|
* in ICE takes care of zeroing out the keytable on reset.
|
|
*/
|
|
if (!ice->hwkm_init_complete)
|
|
return 0;
|
|
}
|
|
|
|
return qcom_scm_clear_ice_key(hwkm_slot, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_ice_evict_key);
|
|
|
|
bool qcom_ice_hwkm_supported(struct qcom_ice *ice)
|
|
{
|
|
return ice->use_hwkm;
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_ice_hwkm_supported);
|
|
|
|
int qcom_ice_derive_sw_secret(struct qcom_ice *ice, const u8 wkey[],
|
|
unsigned int wkey_size,
|
|
u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
|
|
{
|
|
int err = 0;
|
|
struct qtee_shm shm_key, shm_secret;
|
|
|
|
/*
|
|
* The following logic for shmbridge will be taken care in SCM driver
|
|
* in upstream. For now, handle it in the ICE driver downstream until
|
|
* wrapped key upstream effort is complete.
|
|
*/
|
|
err = qtee_shmbridge_allocate_shm(wkey_size, &shm_key);
|
|
if (err)
|
|
return -ENOMEM;
|
|
|
|
err = qtee_shmbridge_allocate_shm(BLK_CRYPTO_SW_SECRET_SIZE, &shm_secret);
|
|
if (err)
|
|
goto free_key;
|
|
|
|
memcpy(shm_key.vaddr, wkey, wkey_size);
|
|
qtee_shmbridge_flush_shm_buf(&shm_key);
|
|
|
|
memset(shm_secret.vaddr, 0, BLK_CRYPTO_SW_SECRET_SIZE);
|
|
qtee_shmbridge_flush_shm_buf(&shm_secret);
|
|
|
|
err = qcom_scm_derive_sw_secret(shm_key.paddr, wkey_size,
|
|
shm_secret.paddr, BLK_CRYPTO_SW_SECRET_SIZE);
|
|
if (err) {
|
|
pr_err("%s:SCM call error for raw secret: 0x%x\n", __func__, err);
|
|
goto free_secret;
|
|
}
|
|
|
|
qtee_shmbridge_inv_shm_buf(&shm_secret);
|
|
memcpy(sw_secret, shm_secret.vaddr, BLK_CRYPTO_SW_SECRET_SIZE);
|
|
qtee_shmbridge_inv_shm_buf(&shm_key);
|
|
|
|
free_secret:
|
|
qtee_shmbridge_free_shm(&shm_secret);
|
|
free_key:
|
|
qtee_shmbridge_free_shm(&shm_key);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_ice_derive_sw_secret);
|
|
|
|
static struct qcom_ice *qcom_ice_create(struct device *dev,
|
|
void __iomem *base)
|
|
{
|
|
struct qcom_ice *engine;
|
|
|
|
if (!qcom_scm_is_available())
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
|
|
if (!qcom_scm_ice_available()) {
|
|
dev_warn(dev, "ICE SCM interface not found\n");
|
|
return NULL;
|
|
}
|
|
|
|
engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
|
|
if (!engine)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
engine->dev = dev;
|
|
engine->base = base;
|
|
|
|
engine->handle_clks = false;
|
|
engine->handle_clks = of_property_read_bool(dev->of_node,
|
|
"qcom,ice-handle-clks");
|
|
/*
|
|
* Legacy DT binding uses different clk names for each consumer,
|
|
* so lets try those first. If none of those are a match, it means
|
|
* the we only have one clock and it is part of the dedicated DT node.
|
|
* Also, enable the clock before we check what HW version the driver
|
|
* supports.
|
|
*/
|
|
if (engine->handle_clks) {
|
|
engine->core_clk = devm_clk_get_optional_enabled(dev, "core_clk_ice");
|
|
if (!engine->core_clk)
|
|
engine->core_clk = devm_clk_get_optional_enabled(dev, "ice");
|
|
if (!engine->core_clk)
|
|
engine->core_clk = devm_clk_get_enabled(dev, NULL);
|
|
if (IS_ERR(engine->core_clk))
|
|
return ERR_CAST(engine->core_clk);
|
|
}
|
|
|
|
engine->use_hwkm = of_property_read_bool(dev->of_node,
|
|
"qcom,ice-use-hwkm");
|
|
|
|
if (!qcom_ice_check_supported(engine))
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
dev_dbg(dev, "Registered Qualcomm Inline Crypto Engine\n");
|
|
|
|
return engine;
|
|
}
|
|
|
|
/**
|
|
* of_qcom_ice_get() - get an ICE instance from a DT node
|
|
* @dev: device pointer for the consumer device
|
|
*
|
|
* This function will provide an ICE instance either by creating one for the
|
|
* consumer device if its DT node provides the 'ice' reg range and the 'ice'
|
|
* clock (for legacy DT style). On the other hand, if consumer provides a
|
|
* phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already
|
|
* be created and so this function will return that instead.
|
|
*
|
|
* Return: ICE pointer on success, NULL if there is no ICE data provided by the
|
|
* consumer or ERR_PTR() on error.
|
|
*/
|
|
struct qcom_ice *of_qcom_ice_get(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct qcom_ice *ice;
|
|
struct device_node *node;
|
|
struct resource *res;
|
|
void __iomem *base;
|
|
|
|
if (!dev || !dev->of_node)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
/*
|
|
* In order to support legacy style devicetree bindings, we need
|
|
* to create the ICE instance using the consumer device and the reg
|
|
* range called 'ice' it provides.
|
|
*/
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice");
|
|
if (res) {
|
|
base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(base))
|
|
return ERR_CAST(base);
|
|
|
|
/* create ICE instance using consumer dev */
|
|
return qcom_ice_create(&pdev->dev, base);
|
|
}
|
|
|
|
/*
|
|
* If the consumer node does not provider an 'ice' reg range
|
|
* (legacy DT binding), then it must at least provide a phandle
|
|
* to the ICE devicetree node, otherwise ICE is not supported.
|
|
*/
|
|
node = of_parse_phandle(dev->of_node, "qcom,ice", 0);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
pdev = of_find_device_by_node(node);
|
|
if (!pdev) {
|
|
dev_err(dev, "Cannot find device node %s\n", node->name);
|
|
ice = ERR_PTR(-EPROBE_DEFER);
|
|
goto out;
|
|
}
|
|
|
|
ice = platform_get_drvdata(pdev);
|
|
if (!ice) {
|
|
dev_err(dev, "Cannot get ice instance from %s\n",
|
|
dev_name(&pdev->dev));
|
|
platform_device_put(pdev);
|
|
ice = ERR_PTR(-EPROBE_DEFER);
|
|
goto out;
|
|
}
|
|
|
|
ice->link = device_link_add(dev, &pdev->dev, DL_FLAG_AUTOREMOVE_SUPPLIER);
|
|
if (!ice->link) {
|
|
dev_err(&pdev->dev,
|
|
"Failed to create device link to consumer %s\n",
|
|
dev_name(dev));
|
|
platform_device_put(pdev);
|
|
ice = ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
out:
|
|
of_node_put(node);
|
|
|
|
return ice;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_qcom_ice_get);
|
|
|
|
static int qcom_ice_probe(struct platform_device *pdev)
|
|
{
|
|
struct qcom_ice *engine;
|
|
void __iomem *base;
|
|
|
|
base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(base)) {
|
|
dev_warn(&pdev->dev, "ICE registers not found\n");
|
|
return PTR_ERR(base);
|
|
}
|
|
|
|
engine = qcom_ice_create(&pdev->dev, base);
|
|
if (IS_ERR(engine))
|
|
return PTR_ERR(engine);
|
|
|
|
platform_set_drvdata(pdev, engine);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id qcom_ice_of_match_table[] = {
|
|
{ .compatible = "qcom,inline-crypto-engine" },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, qcom_ice_of_match_table);
|
|
|
|
static struct platform_driver qcom_ice_driver = {
|
|
.probe = qcom_ice_probe,
|
|
.driver = {
|
|
.name = "qcom-ice",
|
|
.of_match_table = qcom_ice_of_match_table,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(qcom_ice_driver);
|
|
|
|
MODULE_DESCRIPTION("Qualcomm Inline Crypto Engine driver");
|
|
MODULE_LICENSE("GPL");
|