Files
android_kernel_samsung_sm8750/drivers/remoteproc/qcom_q6v5_pas.c
2025-08-12 22:16:57 +02:00

2645 lines
68 KiB
C
Executable File

// SPDX-License-Identifier: GPL-2.0-only
/*
* Qualcomm ADSP/SLPI Peripheral Image Loader for MSM8974 and MSM8996
*
* Copyright (C) 2016 Linaro Ltd
* Copyright (C) 2014 Sony Mobile Communications AB
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
* Copyright (c) 2023-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_reserved_mem.h>
#include <linux/panic_notifier.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/firmware/qcom/qcom_scm.h>
#include <linux/regulator/consumer.h>
#include <linux/remoteproc.h>
#include <linux/soc/qcom/mdt_loader.h>
#include <linux/soc/qcom/smem.h>
#include <linux/soc/qcom/smem_state.h>
#include <linux/soc/qcom/qcom_aoss.h>
#include <soc/qcom/qcom_ramdump.h>
#include <soc/qcom/secure_buffer.h>
#include <trace/hooks/remoteproc.h>
#include <linux/iopoll.h>
#include <linux/refcount.h>
#include <trace/events/rproc_qcom.h>
#include <linux/interconnect.h>
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#endif
#include "qcom_common.h"
#include "qcom_pil_info.h"
#include "qcom_q6v5.h"
#include "remoteproc_internal.h"
#define ADSP_DECRYPT_SHUTDOWN_DELAY_MS 100
#define RPROC_HANDOVER_POLL_DELAY_MS 1
#define MAX_ASSIGN_COUNT 2
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
#define SENSOR_SUPPLY_NAME "sensor_vdd"
#define SUBSENSOR_SUPPLY_NAME "subsensor_vdd"
#define PROX_VDD_NAME "prox_vdd"
#define SUBSENSOR_VDD_MAX_RETRY 50
#endif
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
static int sensor_supply_reg_idx = -1;
static int subsensor_supply_reg_idx = -1;
static int prox_vdd_reg_idx = -1;
static int prox_vdd_retry_cnt;
static int subsensor_vdd_retry_cnt;
static bool set_subsensor_vdd_done;
static bool is_need_subsensor;
#endif
#define to_rproc(d) container_of(d, struct rproc, dev)
#define SOCCP_SLEEP_US 100
#define SOCCP_TIMEOUT_US 10000
#define SOCCP_STATE_MASK 0x600
#define SPARE_REG_SOCCP_D0 0x1
#define SOCCP_D0 0x2
#define SOCCP_D1 0x4
#define SOCCP_D3 0x8
struct adsp_data {
int crash_reason_smem;
int crash_reason_stack;
unsigned int smem_host_id;
const char *firmware_name;
const char *dtb_firmware_name;
int pas_id;
int dtb_pas_id;
unsigned int minidump_id;
bool both_dumps;
bool uses_elf64;
bool auto_boot;
bool decrypt_shutdown;
char **proxy_pd_names;
const char *load_state;
const char *ssr_name;
const char *sysmon_name;
int ssctl_id;
int region_assign_idx;
int region_assign_count;
bool region_assign_shared;
int region_assign_vmid;
bool dma_phys_below_32b;
bool check_status;
};
struct qcom_adsp {
struct device *dev;
struct device *minidump_dev;
struct rproc *rproc;
struct qcom_q6v5 q6v5;
struct clk *xo;
struct clk *aggre2_clk;
struct regulator *cx_supply;
struct regulator *px_supply;
struct reg_info *regs;
int reg_cnt;
struct device *proxy_pds[3];
int proxy_pd_count;
const char *dtb_firmware_name;
int pas_id;
int dtb_pas_id;
unsigned int minidump_id;
bool both_dumps;
int crash_reason_smem;
int crash_reason_stack;
unsigned int smem_host_id;
bool decrypt_shutdown;
const char *info_name;
const struct firmware *firmware;
const struct firmware *dtb_firmware;
struct completion start_done;
struct completion stop_done;
phys_addr_t mem_phys;
phys_addr_t dtb_mem_phys;
phys_addr_t mem_reloc;
phys_addr_t dtb_mem_reloc;
phys_addr_t region_assign_phys[MAX_ASSIGN_COUNT];
void *mem_region;
void *dtb_mem_region;
size_t mem_size;
size_t dtb_mem_size;
size_t region_assign_size[MAX_ASSIGN_COUNT];
int region_assign_idx;
int region_assign_count;
bool region_assign_shared;
int region_assign_vmid;
u64 region_assign_perms[MAX_ASSIGN_COUNT];
bool dma_phys_below_32b;
bool subsys_recovery_disabled;
bool region_assigned;
struct qcom_rproc_glink glink_subdev;
struct qcom_rproc_subdev smd_subdev;
struct qcom_rproc_ssr ssr_subdev;
struct qcom_sysmon *sysmon;
struct qcom_scm_pas_metadata pas_metadata;
struct qcom_scm_pas_metadata dtb_pas_metadata;
struct qcom_smem_state *wake_state;
struct qcom_smem_state *sleep_state;
struct notifier_block panic_blk;
struct mutex adsp_lock;
unsigned int wake_bit;
unsigned int sleep_bit;
refcount_t current_users;
void *tcsr_addr;
void *spare_reg_addr;
bool check_status;
struct workqueue_struct *adsp_wq;
struct work_struct ssr_handler;
};
struct msm_ipc_subsys_request {
char name[16];
char reason[16];
int request_id;
};
enum {
SUBSYS_CR_REQ = 0,
SUBSYS_RES_REQ,
};
static ssize_t ssr_store(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct msm_ipc_subsys_request *req = (struct msm_ipc_subsys_request *)buf;
struct platform_device *pdev = container_of(dev, struct platform_device, dev);
struct qcom_adsp *adsp = (struct qcom_adsp *)platform_get_drvdata(pdev);
struct rproc *rproc = adsp->rproc;
if (count < sizeof(struct msm_ipc_subsys_request)) {
dev_err(&rproc->dev, "Invalid argument for SSR (%lu!=%lu)\n",
count, sizeof(struct msm_ipc_subsys_request));
return -EINVAL;
}
/* NOTE: it supports only "modem" */
if (strncmp(req->name, "modem", 5) != 0) {
dev_err(&rproc->dev, "unsupported subsys: %s\n", req->name);
return -EPERM;
}
switch (req->request_id) {
case SUBSYS_CR_REQ:
panic("RIL triggered %s crash %s", req->name, req->reason);
break;
case SUBSYS_RES_REQ:
dev_info(&rproc->dev, "silent_ssr: %s\n", req->name);
/* Prevent suspend while the remoteproc is being recovered */
pm_stay_awake(rproc->dev.parent);
queue_work(adsp->adsp_wq, &adsp->ssr_handler);
break;
default:
dev_err(&rproc->dev, "Invalid request %d\n", req->request_id);
return -EINVAL;
}
return count;
}
static DEVICE_ATTR_WO(ssr);
static void adsp_ssr_handler_work(struct work_struct *work)
{
struct qcom_adsp *adsp = container_of(work, struct qcom_adsp, ssr_handler);
struct qcom_q6v5 *q6v5 = &adsp->q6v5;
struct rproc *rproc = adsp->rproc;
struct rproc_subdev *subdev;
const struct firmware *firmware_p;
int ret;
dev_info(&rproc->dev, "trigger sussystem restart - %s\n", rproc->firmware);
ret = mutex_lock_interruptible(&rproc->lock);
if (ret) {
dev_err(&rproc->dev, "can't lock rproc %s: %d\n", rproc->name, ret);
goto exit;
}
if (!atomic_read(&rproc->power)) {
dev_err(&rproc->dev, "already offline rproc %s: %d\n", rproc->name, ret);
goto proc_unlock;
}
spin_lock_irq(&q6v5->silent_ssr_lock);
atomic_set(&q6v5->ssr_in_prog, 1);
spin_unlock_irq(&q6v5->silent_ssr_lock);
/* Stop any subdevices for the remote processor */
list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
if (subdev->stop)
subdev->stop(subdev, false);
}
/* power off the remote processor */
ret = rproc->ops->stop(rproc);
if (ret) {
dev_err(&rproc->dev, "can't stop rproc: %d\n", ret);
goto proc_unlock;
}
list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
if (subdev->unprepare)
subdev->unprepare(subdev);
}
rproc->state = RPROC_OFFLINE;
/* load firmware */
ret = request_firmware(&firmware_p, rproc->firmware, &rproc->dev);
if (ret < 0) {
dev_err(&rproc->dev, "request_firmware failed: %d\n", ret);
goto proc_unlock;
}
if (rproc->ops->load) {
ret = rproc->ops->load(rproc, firmware_p);
if (ret) {
dev_err(&rproc->dev, "failed to load fw: %d\n", ret);
goto out;
}
}
list_for_each_entry(subdev, &rproc->subdevs, node) {
if (subdev->prepare) {
ret = subdev->prepare(subdev);
if (ret)
goto unroll_preparation;
}
}
/* power up the remote processor */
ret = rproc->ops->start(rproc);
if (ret) {
dev_err(&rproc->dev, "can't start rproc %s: %d\n", rproc->name, ret);
goto unroll_preparation;
}
list_for_each_entry(subdev, &rproc->subdevs, node) {
if (subdev->start) {
ret = subdev->start(subdev);
if (ret)
goto unroll_registration;
}
}
rproc->state = RPROC_RUNNING;
dev_info(&rproc->dev, "remote processor %s is now up\n", rproc->name);
goto out;
unroll_registration:
list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
if (subdev->stop)
subdev->stop(subdev, true);
}
rproc->ops->stop(rproc);
unroll_preparation:
list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
if (subdev->unprepare)
subdev->unprepare(subdev);
}
out:
release_firmware(firmware_p);
proc_unlock:
spin_lock_irq(&q6v5->silent_ssr_lock);
atomic_set(&q6v5->ssr_in_prog, 0);
spin_unlock_irq(&q6v5->silent_ssr_lock);
mutex_unlock(&rproc->lock);
exit:
pm_relax(rproc->dev.parent);
}
static ssize_t txn_id_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = container_of(dev, struct platform_device, dev);
struct qcom_adsp *adsp = (struct qcom_adsp *)platform_get_drvdata(pdev);
return sysfs_emit(buf, "%u\n", qcom_sysmon_get_txn_id(adsp->sysmon));
}
static DEVICE_ATTR_RO(txn_id);
static int adsp_custom_segment_dump(struct qcom_adsp *adsp,
struct rproc_dump_segment *segment,
void *dest, size_t offset, size_t size)
{
int len = strlen("md_dbg_buf");
void __iomem *base;
int total_offset;
bool valid = false;
int i;
if (segment->priv && strnlen(segment->priv, len + 1) == len &&
!strcmp(segment->priv, "md_dbg_buf"))
goto custom_segment_dump;
/*
* Also, do second level of check for custom segments in
* adsp_custom_segment_dump(), which checks if the segment
* lies outside the subsystem region range.
*/
for (i = 0; i < adsp->region_assign_count; i++) {
total_offset = segment->da + segment->offset +
offset - adsp->region_assign_phys[i];
if (!(total_offset < 0 ||
total_offset + size > adsp->region_assign_size[i])) {
valid = true;
break;
}
}
if (!valid)
return -EINVAL;
custom_segment_dump:
base = ioremap((unsigned long)le64_to_cpu(segment->da), size);
if (!base) {
dev_err(adsp->dev, "failed to map custom_segment region\n");
return -EINVAL;
}
memcpy_fromio(dest, base, size);
iounmap(base);
return 0;
}
void adsp_segment_dump(struct rproc *rproc, struct rproc_dump_segment *segment,
void *dest, size_t offset, size_t size)
{
struct qcom_adsp *adsp = rproc->priv;
int total_offset;
total_offset = segment->da + segment->offset + offset - adsp->mem_phys;
if (!(total_offset < 0 || total_offset + size > adsp->mem_size)) {
memcpy_fromio(dest, adsp->mem_region + total_offset, size);
return;
} else if (!adsp_custom_segment_dump(adsp, segment, dest, offset, size)) {
return;
}
dev_err(adsp->dev,
"invalid copy request for segment %pad with offset %zu and size %zu)\n",
&segment->da, offset, size);
memset(dest, 0xff, size);
}
static void adsp_minidump(struct rproc *rproc)
{
struct qcom_adsp *adsp = rproc->priv;
trace_rproc_qcom_event(dev_name(adsp->dev), "adsp_minidump", "enter");
if (rproc->dump_conf == RPROC_COREDUMP_DISABLED)
goto exit;
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
if (strstr(rproc->name, "adsp") && !adsp->q6v5.fssr_dump)
goto exit;
#endif
qcom_minidump(rproc, adsp->minidump_dev, adsp->minidump_id, adsp_segment_dump,
adsp->both_dumps);
exit:
trace_rproc_qcom_event(dev_name(adsp->dev), "adsp_minidump", "exit");
}
static void disable_regulators(struct qcom_adsp *adsp)
{
int i;
for (i = (adsp->reg_cnt - 1); i >= 0; i--) {
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
if (!strcmp(adsp->info_name, "adsp")) {
if ((i == sensor_supply_reg_idx)
|| (i == subsensor_supply_reg_idx)
|| (i == prox_vdd_reg_idx)) {
dev_info(adsp->dev, "skip disabling %s, idx: %d",
SENSOR_SUPPLY_NAME, i);
continue;
}
if (IS_ERR(adsp->regs[i].reg)) {
dev_info(adsp->dev, "skip disabling idx: %d", i);
continue;
}
}
#endif
regulator_set_voltage(adsp->regs[i].reg, 0, INT_MAX);
regulator_set_load(adsp->regs[i].reg, 0);
regulator_disable(adsp->regs[i].reg);
}
}
static int enable_regulators(struct qcom_adsp *adsp)
{
int i, rc = 0;
for (i = 0; i < adsp->reg_cnt; i++) {
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
if (!strcmp(adsp->info_name, "adsp")) {
if (IS_ERR(adsp->regs[i].reg)) {
dev_info(adsp->dev, "skip enabling idx: %d", i);
continue;
}
}
#endif
regulator_set_voltage(adsp->regs[i].reg, adsp->regs[i].uV, INT_MAX);
regulator_set_load(adsp->regs[i].reg, adsp->regs[i].uA);
rc = regulator_enable(adsp->regs[i].reg);
if (rc) {
dev_err(adsp->dev, "Regulator enable failed(rc:%d)\n",
rc);
goto err_enable;
}
}
return rc;
err_enable:
disable_regulators(adsp);
return rc;
}
static int adsp_pds_enable(struct qcom_adsp *adsp, struct device **pds,
size_t pd_count)
{
int ret;
int i;
for (i = 0; i < pd_count; i++) {
dev_pm_genpd_set_performance_state(pds[i], INT_MAX);
ret = pm_runtime_get_sync(pds[i]);
if (ret < 0) {
pm_runtime_put_noidle(pds[i]);
dev_pm_genpd_set_performance_state(pds[i], 0);
goto unroll_pd_votes;
}
}
return 0;
unroll_pd_votes:
for (i--; i >= 0; i--) {
dev_pm_genpd_set_performance_state(pds[i], 0);
pm_runtime_put(pds[i]);
}
return ret;
};
static void adsp_pds_disable(struct qcom_adsp *adsp, struct device **pds,
size_t pd_count)
{
int i;
for (i = 0; i < pd_count; i++) {
dev_pm_genpd_set_performance_state(pds[i], 0);
pm_runtime_put(pds[i]);
}
}
static int adsp_shutdown_poll_decrypt(struct qcom_adsp *adsp)
{
unsigned int retry_num = 50;
int ret;
do {
msleep(ADSP_DECRYPT_SHUTDOWN_DELAY_MS);
ret = qcom_scm_pas_shutdown(adsp->pas_id);
} while (ret == -EINVAL && --retry_num);
return ret;
}
static int adsp_unprepare(struct rproc *rproc)
{
struct qcom_adsp *adsp = rproc->priv;
struct device *dev = NULL;
if (adsp->dma_phys_below_32b)
dev = adsp->dev;
/*
* adsp_load() did pass pas_metadata to the SCM driver for storing
* metadata context. It might have been released already if
* auth_and_reset() was successful, but in other cases clean it up
* here.
*/
qcom_scm_pas_metadata_release(&adsp->pas_metadata, dev);
if (adsp->dtb_pas_id)
qcom_scm_pas_metadata_release(&adsp->dtb_pas_metadata, dev);
return 0;
}
static void adsp_add_coredump_segments(struct qcom_adsp *adsp, const struct firmware *fw)
{
struct rproc *rproc = adsp->rproc;
struct rproc_dump_segment *entry;
rproc_coredump_cleanup(rproc);
if (qcom_register_dump_segments(rproc, fw) < 0) {
rproc_coredump_cleanup(adsp->rproc);
return;
}
list_for_each_entry(entry, &rproc->dump_segments, node)
entry->da = adsp->mem_phys + entry->da - adsp->mem_reloc;
}
static int adsp_load(struct rproc *rproc, const struct firmware *fw)
{
struct qcom_adsp *adsp = rproc->priv;
struct device *dev = NULL;
int ret = 0;
trace_rproc_qcom_event(dev_name(adsp->dev), "adsp_load", "enter");
if (adsp->dma_phys_below_32b)
dev = adsp->dev;
/* Store firmware handle to be used in adsp_start() */
adsp->firmware = fw;
if (adsp->dtb_pas_id) {
ret = request_firmware(&adsp->dtb_firmware, adsp->dtb_firmware_name, adsp->dev);
if (ret) {
dev_err(adsp->dev, "request_firmware failed for %s: %d\n",
adsp->dtb_firmware_name, ret);
goto exit_load;
}
ret = qcom_mdt_pas_init(adsp->dev, adsp->dtb_firmware, adsp->dtb_firmware_name,
adsp->dtb_pas_id, adsp->dtb_mem_phys,
&adsp->dtb_pas_metadata, adsp->dma_phys_below_32b);
if (ret)
goto release_dtb_firmware;
ret = qcom_mdt_load_no_init(adsp->dev, adsp->dtb_firmware, adsp->dtb_firmware_name,
adsp->dtb_pas_id, adsp->dtb_mem_region,
adsp->dtb_mem_phys, adsp->dtb_mem_size,
&adsp->dtb_mem_reloc);
if (ret)
goto release_dtb_metadata;
}
goto exit_load;
release_dtb_metadata:
if (adsp->dtb_pas_id && adsp->dma_phys_below_32b)
qcom_scm_pas_shutdown(adsp->dtb_pas_id);
if (adsp->dtb_pas_id)
qcom_scm_pas_metadata_release(&adsp->dtb_pas_metadata, dev);
release_dtb_firmware:
release_firmware(adsp->dtb_firmware);
exit_load:
trace_rproc_qcom_event(dev_name(adsp->dev), "adsp_load", "exit");
return ret;
}
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
static void disable_regulators_sensor_vdd(struct qcom_adsp *adsp)
{
dev_info(adsp->dev, "%s Regulator disable: %s %d uV %d uA\n", __func__,
SENSOR_SUPPLY_NAME, adsp->regs[sensor_supply_reg_idx].uV,
adsp->regs[sensor_supply_reg_idx].uA);
regulator_set_voltage(adsp->regs[sensor_supply_reg_idx].reg, 0, INT_MAX);
regulator_set_load(adsp->regs[sensor_supply_reg_idx].reg, 0);
regulator_disable(adsp->regs[sensor_supply_reg_idx].reg);
if (subsensor_supply_reg_idx > 0) {
dev_info(adsp->dev, "%s Regulator disable: %s %d uV %d uA\n", __func__,
SUBSENSOR_SUPPLY_NAME, adsp->regs[subsensor_supply_reg_idx].uV,
adsp->regs[subsensor_supply_reg_idx].uA);
regulator_set_voltage(adsp->regs[subsensor_supply_reg_idx].reg, 0, INT_MAX);
regulator_set_load(adsp->regs[subsensor_supply_reg_idx].reg, 0);
regulator_disable(adsp->regs[subsensor_supply_reg_idx].reg);
}
if (prox_vdd_reg_idx > 0) {
dev_info(adsp->dev, "%s Regulator disable: %s %d uV %d uA\n", __func__,
PROX_VDD_NAME, adsp->regs[prox_vdd_reg_idx].uV,
adsp->regs[prox_vdd_reg_idx].uA);
regulator_set_voltage(adsp->regs[prox_vdd_reg_idx].reg, 0, INT_MAX);
regulator_set_load(adsp->regs[prox_vdd_reg_idx].reg, 0);
regulator_disable(adsp->regs[prox_vdd_reg_idx].reg);
}
}
#endif
static void add_mpss_dsm_mem_ssr_dump(struct qcom_adsp *adsp)
{
struct rproc *rproc = adsp->rproc;
struct device_node *np;
struct resource imem;
void __iomem *base;
int ret = 0, i;
const char *prop = "qcom,msm-imem-mss-dsm";
dma_addr_t da;
size_t size;
if (!adsp->region_assign_idx || adsp->region_assign_shared)
return;
np = of_find_compatible_node(NULL, NULL, prop);
if (!np) {
pr_err("%s entry missing!\n", prop);
return;
}
ret = of_address_to_resource(np, 0, &imem);
of_node_put(np);
if (ret < 0) {
pr_err("address to resource conversion failed for %s\n", prop);
return;
}
base = ioremap(imem.start, resource_size(&imem));
if (!base) {
pr_err("failed to map MSS DSM region\n");
return;
}
/*
* There can be multiple DSM partitions based on the Modem flavor.
* Each DSM partition start address and size are written to IMEM by Modem and each
* partition consumes 4 bytes (2 bytes for address and 2 bytes for size) of IMEM.
*
* Modem physical address range has to be in the low 4G (32 bits only) and low 2
* bytes will be zeros, so, left shift by 16 to get proper address & size.
*/
for (i = 0; i < resource_size(&imem); i = i + 4) {
da = (u32)(__raw_readw(base + i) << 16);
size = (u32)(__raw_readw(base + (i + 2)) << 16);
if (da && size)
rproc_coredump_add_custom_segment(rproc, da, size, adsp_segment_dump, NULL);
}
iounmap(base);
}
static int adsp_assign_memory_region(struct qcom_adsp *adsp)
{
struct qcom_scm_vmperm perm[2];
unsigned int perm_size = 1;
struct device_node *node;
struct resource r;
int offset, ret;
if (!adsp->region_assign_idx)
return 0;
for (offset = 0; offset < adsp->region_assign_count; ++offset) {
node = of_parse_phandle(adsp->dev->of_node, "memory-region",
adsp->region_assign_idx + offset);
if (!node) {
dev_err(adsp->dev, "missing shareable memory-region %d\n", offset);
return -EINVAL;
}
ret = of_address_to_resource(node, 0, &r);
if (ret)
return ret;
if (adsp->region_assign_shared) {
perm[0].vmid = QCOM_SCM_VMID_HLOS;
perm[0].perm = QCOM_SCM_PERM_RW;
perm[1].vmid = adsp->region_assign_vmid;
perm[1].perm = QCOM_SCM_PERM_RW;
perm_size = 2;
} else {
perm[0].vmid = adsp->region_assign_vmid;
perm[0].perm = QCOM_SCM_PERM_RW;
perm_size = 1;
}
adsp->region_assign_phys[offset] = r.start;
adsp->region_assign_size[offset] = resource_size(&r);
adsp->region_assign_perms[offset] = BIT(QCOM_SCM_VMID_HLOS);
ret = qcom_scm_assign_mem(adsp->region_assign_phys[offset],
adsp->region_assign_size[offset],
&adsp->region_assign_perms[offset],
perm, perm_size);
if (ret < 0) {
dev_err(adsp->dev, "assign memory %d failed\n", offset);
return ret;
}
}
return 0;
}
static void adsp_unassign_memory_region(struct qcom_adsp *adsp)
{
struct qcom_scm_vmperm perm;
int offset, ret;
if (!adsp->region_assign_idx || adsp->region_assign_shared)
return;
for (offset = 0; offset < adsp->region_assign_count; ++offset) {
perm.vmid = QCOM_SCM_VMID_HLOS;
perm.perm = QCOM_SCM_PERM_RW;
ret = qcom_scm_assign_mem(adsp->region_assign_phys[offset],
adsp->region_assign_size[offset],
&adsp->region_assign_perms[offset],
&perm, 1);
if (ret < 0)
dev_err(adsp->dev, "unassign memory failed\n");
}
}
static int adsp_start(struct rproc *rproc)
{
struct qcom_adsp *adsp = rproc->priv;
struct device *dev = NULL;
bool auth_reset_ret = false;
int ret, err;
trace_rproc_qcom_event(dev_name(adsp->dev), "adsp_start", "enter");
if (adsp->check_status)
refcount_set(&adsp->current_users, 0);
if (adsp->dma_phys_below_32b)
dev = adsp->dev;
ret = qcom_q6v5_prepare(&adsp->q6v5);
if (ret)
goto exit_start;
if (!adsp->region_assign_shared ||
(adsp->region_assign_shared && !adsp->region_assigned)) {
ret = adsp_assign_memory_region(adsp);
if (ret)
goto disable_irqs;
}
adsp->region_assigned = true;
ret = adsp_pds_enable(adsp, adsp->proxy_pds, adsp->proxy_pd_count);
if (ret < 0)
goto unassign_memory;
ret = clk_prepare_enable(adsp->xo);
if (ret)
goto disable_proxy_pds;
ret = clk_prepare_enable(adsp->aggre2_clk);
if (ret)
goto disable_xo_clk;
if (adsp->cx_supply) {
ret = regulator_enable(adsp->cx_supply);
if (ret)
goto disable_aggre2_clk;
}
if (adsp->px_supply) {
ret = regulator_enable(adsp->px_supply);
if (ret)
goto disable_cx_supply;
}
ret = enable_regulators(adsp);
if (ret)
goto disable_px_supply;
trace_rproc_qcom_event(dev_name(adsp->dev), "dtb_auth_reset", "enter");
if (adsp->dtb_pas_id) {
ret = qcom_scm_pas_auth_and_reset(adsp->dtb_pas_id);
if (ret)
panic("Panicking, auth and reset failed for remoteproc %s dtb ret=%d\n",
rproc->name, ret);
auth_reset_ret = true;
}
trace_rproc_qcom_event(dev_name(adsp->dev), "Q6_firmware_loading", "enter");
ret = qcom_mdt_pas_init(adsp->dev, adsp->firmware, rproc->firmware, adsp->pas_id,
adsp->mem_phys, &adsp->pas_metadata, adsp->dma_phys_below_32b);
if (ret)
goto disable_regulator;
ret = qcom_mdt_load_no_init(adsp->dev, adsp->firmware, rproc->firmware, adsp->pas_id,
adsp->mem_region, adsp->mem_phys, adsp->mem_size,
&adsp->mem_reloc);
if (ret)
goto unlock_pas_metadata;
qcom_pil_info_store(adsp->info_name, adsp->mem_phys, adsp->mem_size);
adsp_add_coredump_segments(adsp, adsp->firmware);
trace_rproc_qcom_event(dev_name(adsp->dev), "Q6_auth_reset", "enter");
ret = qcom_scm_pas_auth_and_reset(adsp->pas_id);
trace_rproc_qcom_event(dev_name(adsp->dev), "Q6_auth_reset", "exit");
if (ret)
panic("Panicking, auth and reset failed for remoteproc %s ret=%d\n",
rproc->name, ret);
trace_rproc_qcom_event(dev_name(adsp->dev), "Q6_auth_reset", "exit");
if (!qcom_pil_timeouts_disabled()) {
ret = qcom_q6v5_wait_for_start(&adsp->q6v5, msecs_to_jiffies(5000));
if (rproc->recovery_disabled && ret)
panic("Panicking, remoteproc %s failed to bootup.\n", adsp->rproc->name);
else if (ret == -ETIMEDOUT) {
dev_err(adsp->dev, "start timed out\n");
goto release_pas_metadata;
}
}
qcom_scm_pas_metadata_release(&adsp->pas_metadata, dev);
adsp->q6v5.seq++;
goto exit_start;
unlock_pas_metadata:
/*
* Unlocking of pas metadata only required either the call to
* auth and reset is not reached after qcom_mdt_pas_init() success.
* In case auth and reset is success, no need to call shutdown or
* unlock pas metadata.
*/
if (adsp->dma_phys_below_32b) {
err = qcom_scm_pas_shutdown(adsp->pas_id);
if (err && adsp->decrypt_shutdown)
err = adsp_shutdown_poll_decrypt(adsp);
if (err)
panic("Panicking, remoteproc %s failed to unlock pas_metadata.\n",
rproc->name);
}
release_pas_metadata:
qcom_scm_pas_metadata_release(&adsp->pas_metadata, dev);
disable_regulator:
disable_regulators(adsp);
disable_px_supply:
if (adsp->px_supply)
regulator_disable(adsp->px_supply);
disable_cx_supply:
if (adsp->cx_supply)
regulator_disable(adsp->cx_supply);
disable_aggre2_clk:
clk_disable_unprepare(adsp->aggre2_clk);
disable_xo_clk:
clk_disable_unprepare(adsp->xo);
disable_proxy_pds:
adsp_pds_disable(adsp, adsp->proxy_pds, adsp->proxy_pd_count);
unassign_memory:
adsp->region_assigned = false;
adsp_unassign_memory_region(adsp);
disable_irqs:
qcom_q6v5_unprepare(&adsp->q6v5);
exit_start:
if (adsp->dtb_pas_id && adsp->dma_phys_below_32b && !auth_reset_ret)
qcom_scm_pas_shutdown(adsp->dtb_pas_id);
if (adsp->dtb_pas_id)
qcom_scm_pas_metadata_release(&adsp->dtb_pas_metadata, dev);
release_firmware(adsp->dtb_firmware);
/* Remove pointer to the loaded firmware, only valid in adsp_load() & adsp_start() */
adsp->firmware = NULL;
dev_info(adsp->dev, "adsp_start, fssr:%d, recovery_disabled:%d, prev:%d\n",
(int)adsp->q6v5.fssr,
(int)rproc->recovery_disabled,
(int)adsp->q6v5.prev_recovery_disabled);
if (strstr(rproc->name, "adsp") != NULL && adsp->q6v5.fssr) {
dev_info(adsp->dev, "fssr:%d, %d->%d\n", (int)adsp->q6v5.fssr,
(int)rproc->recovery_disabled,
(int)adsp->q6v5.prev_recovery_disabled);
adsp->q6v5.fssr = false;
rproc->recovery_disabled = adsp->q6v5.prev_recovery_disabled;
}
trace_rproc_qcom_event(dev_name(adsp->dev), "adsp_start", "exit");
return ret;
}
/*
* rproc_config_check: Check back the config register
*
* Polled read on a register till with a 5ms timeout and 100-200Us interval.
* Returns immediately if the expected value is read back from the addr.
*
* state: new state of the rproc
* addr: Address to poll on
*
* return: 0 if the expected value is read back from the address
* -ETIMEDOUT is the value was not read in 5ms
*/
static int rproc_config_check(struct qcom_adsp *adsp, u32 state, void *addr)
{
unsigned int retry_num = 50;
u32 val;
do {
usleep_range(SOCCP_SLEEP_US, SOCCP_SLEEP_US + 100);
val = readl(addr);
} while (!(val & state) && --retry_num);
return (val & state) ? 0 : -ETIMEDOUT;
}
static int rproc_config_check_atomic(struct qcom_adsp *adsp, u32 state, void *addr)
{
u32 val;
return readx_poll_timeout_atomic(readl, addr, val,
val == state, SOCCP_SLEEP_US, SOCCP_TIMEOUT_US);
}
/*
* rproc_find_status_register: Find the power control regs and INT's
*
* Call this function to calculated the tcsr config register, which
* is the register to be chacked to read the current state of the rproc.
*
* return: 0 for success
*
*/
static int rproc_find_status_register(struct qcom_adsp *adsp)
{
struct device_node *tcsr;
struct device_node *np = adsp->dev->of_node;
struct resource res;
u32 offset, addr;
int ret;
void *tcsr_base;
tcsr = of_parse_phandle(np, "soccp-tcsr", 0);
if (!tcsr) {
dev_err(adsp->dev, "Unable to find the soccp config register\n");
return -EINVAL;
}
ret = of_address_to_resource(tcsr, 0, &res);
of_node_put(tcsr);
if (ret) {
dev_err(adsp->dev, "Unable to find the tcsr base addr\n");
return ret;
}
tcsr_base = ioremap_wc(res.start, resource_size(&res));
if (!tcsr_base) {
dev_err(adsp->dev, "Unable to find the tcsr base addr\n");
return -ENOMEM;
}
ret = of_property_read_u32_index(np, "soccp-tcsr", 1, &offset);
if (ret < 0) {
dev_err(adsp->dev, "Unable to find the tcsr config offset addr\n");
iounmap(tcsr_base);
return ret;
}
adsp->tcsr_addr = tcsr_base + offset;
ret = of_property_read_u32(np, "soccp-spare", &addr);
if (!addr) {
dev_err(adsp->dev, "Unable to find the running config register\n");
return -EINVAL;
}
adsp->spare_reg_addr = ioremap_wc(addr, 4);
if (!adsp->spare_reg_addr) {
dev_err(adsp->dev, "Unable to find the tcsr base addr\n");
return -ENOMEM;
}
return 0;
}
static bool rproc_poll_handover(struct qcom_adsp *adsp)
{
unsigned int retry_num = 50;
do {
msleep(RPROC_HANDOVER_POLL_DELAY_MS);
} while (!adsp->q6v5.handover_issued && --retry_num);
return adsp->q6v5.handover_issued;
}
/*
* rproc_set_state: Request the SOCCP to change state
*
* Function to request the SOCCP to move to Running/Dormant.
* Blocking API, where the MAX timeout is 5 seconds.
*
* state: 1 to set state to RUNNING (D3 to D0)
* 0 to set state to SUSPEND (D0 to D3)
*
* return: 0 if status is set, else -ETIMEOUT
*/
int rproc_set_state(struct rproc *rproc, bool state)
{
int ret = 0;
int users;
struct qcom_adsp *adsp;
if (!rproc || !rproc->priv) {
pr_err("no rproc or adsp\n");
return -EINVAL;
}
adsp = (struct qcom_adsp *)rproc->priv;
if (!adsp->q6v5.running) {
dev_err(adsp->dev, "rproc is not running\n");
return -EINVAL;
} else if (!adsp->q6v5.handover_issued) {
dev_err(adsp->dev, "rproc is running but handover is not received\n");
if (!rproc_poll_handover(adsp)) {
dev_err(adsp->dev, "retry for handover timedout\n");
return -EINVAL;
}
}
mutex_lock(&adsp->adsp_lock);
users = refcount_read(&adsp->current_users);
if (state) {
if (users >= 1) {
refcount_inc(&adsp->current_users);
ret = 0;
goto soccp_out;
}
ret = enable_regulators(adsp);
if (ret) {
dev_err(adsp->dev, "failed to enable regulators\n");
goto soccp_out;
}
ret = icc_set_bw(adsp->q6v5.path, UINT_MAX, UINT_MAX);
if (ret < 0) {
dev_err(adsp->q6v5.dev, "failed to set bandwidth request\n");
goto soccp_out;
}
ret = clk_prepare_enable(adsp->xo);
if (ret) {
dev_err(adsp->dev, "failed to enable clks\n");
goto soccp_out;
}
ret = qcom_smem_state_update_bits(adsp->wake_state,
SOCCP_STATE_MASK,
BIT(adsp->wake_bit));
if (ret) {
dev_err(adsp->dev, "failed to update smem bits for D3 to D0\n");
goto soccp_out;
}
ret = rproc_config_check(adsp, SOCCP_D0 | SOCCP_D1, adsp->tcsr_addr);
if (ret) {
dev_err(adsp->dev, "%s requested D3->D0: soccp failed to update tcsr val=%d\n",
current->comm, readl(adsp->tcsr_addr));
goto soccp_out;
}
ret = rproc_config_check(adsp, SPARE_REG_SOCCP_D0, adsp->spare_reg_addr);
if (ret) {
ret = qcom_smem_state_update_bits(adsp->wake_state,
SOCCP_STATE_MASK,
!BIT(adsp->wake_bit));
if (ret)
dev_err(adsp->dev, "failed to clear smem bits after a failed D0 request\n");
dev_err(adsp->dev, "%s requested D3->D0: soccp failed to update spare reg val=%d\n",
current->comm, readl(adsp->spare_reg_addr));
goto soccp_out;
}
refcount_set(&adsp->current_users, 1);
} else {
if (users > 1) {
refcount_dec(&adsp->current_users);
ret = 0;
goto soccp_out;
} else if (users == 1) {
ret = qcom_smem_state_update_bits(adsp->sleep_state,
SOCCP_STATE_MASK,
BIT(adsp->sleep_bit));
if (ret) {
dev_err(adsp->dev, "failed to update smem bits for D0 to D3\n");
goto soccp_out;
}
ret = rproc_config_check(adsp, SOCCP_D3, adsp->tcsr_addr);
if (ret) {
ret = qcom_smem_state_update_bits(adsp->sleep_state,
SOCCP_STATE_MASK,
!BIT(adsp->sleep_bit));
if (ret)
dev_err(adsp->dev, "failed to clear smem bits after a failed D3 request\n");
dev_err(adsp->dev, "%s requested D0->D3 failed: TCSR value:%d\n",
current->comm, readl(adsp->tcsr_addr));
goto soccp_out;
}
ret = icc_set_bw(adsp->q6v5.path, 0, 0);
if (ret < 0) {
dev_err(adsp->q6v5.dev, "failed to set bandwidth request\n");
goto soccp_out;
}
disable_regulators(adsp);
clk_disable_unprepare(adsp->xo);
refcount_set(&adsp->current_users, 0);
}
}
soccp_out:
if (ret && (adsp->rproc->state != RPROC_RUNNING)) {
dev_err(adsp->dev, "SOCCP has crashed while processing a D transition req by %s\n",
current->comm);
ret = -EBUSY;
}
mutex_unlock(&adsp->adsp_lock);
return ret;
}
EXPORT_SYMBOL_GPL(rproc_set_state);
static int rproc_panic_handler(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct qcom_adsp *adsp = container_of(this, struct qcom_adsp, panic_blk);
int ret;
if (!adsp)
return NOTIFY_DONE;
/* wake up SOCCP during panic to run error handlers on SOCCP */
dev_info(adsp->dev, "waking SOCCP from panic path\n");
ret = qcom_smem_state_update_bits(adsp->wake_state,
SOCCP_STATE_MASK,
BIT(adsp->wake_bit));
if (ret) {
dev_err(adsp->dev, "failed to update smem bits for D3 to D0\n");
goto done;
}
ret = rproc_config_check_atomic(adsp, SOCCP_D0, adsp->tcsr_addr);
if (ret)
dev_err(adsp->dev, "failed to change to D0\n");
ret = rproc_config_check_atomic(adsp, SPARE_REG_SOCCP_D0, adsp->spare_reg_addr);
if (ret)
dev_err(adsp->dev, "failed to change to D0\n");
done:
return NOTIFY_DONE;
}
static void qcom_pas_handover(struct qcom_q6v5 *q6v5)
{
struct qcom_adsp *adsp = container_of(q6v5, struct qcom_adsp, q6v5);
int ret;
if (adsp->check_status) {
ret = rproc_config_check(adsp, SOCCP_D3, adsp->tcsr_addr);
if (ret)
dev_err(adsp->dev, "state not changed in handover TCSR val = %d\n",
readl(adsp->tcsr_addr));
else
dev_info(adsp->dev, "state changed in handover for soccp! TCSR val = %d\n",
readl(adsp->tcsr_addr));
}
if (adsp->px_supply)
regulator_disable(adsp->px_supply);
if (adsp->cx_supply)
regulator_disable(adsp->cx_supply);
disable_regulators(adsp);
clk_disable_unprepare(adsp->aggre2_clk);
clk_disable_unprepare(adsp->xo);
adsp_pds_disable(adsp, adsp->proxy_pds, adsp->proxy_pd_count);
}
static int adsp_stop(struct rproc *rproc)
{
struct qcom_adsp *adsp = rproc->priv;
int handover;
int ret = 0;
trace_rproc_qcom_event(dev_name(adsp->dev), "adsp_stop", "enter");
ret = qcom_q6v5_request_stop(&adsp->q6v5, adsp->sysmon);
if (ret == -ETIMEDOUT)
dev_err(adsp->dev, "timed out on wait\n");
ret = qcom_scm_pas_shutdown(adsp->pas_id);
if (ret && adsp->decrypt_shutdown)
ret = adsp_shutdown_poll_decrypt(adsp);
if (ret)
panic("Panicking, remoteproc %s failed to shutdown.\n", rproc->name);
if (adsp->dtb_pas_id) {
ret = qcom_scm_pas_shutdown(adsp->dtb_pas_id);
if (ret)
panic("Panicking, remoteproc %s dtb failed to shutdown.\n", rproc->name);
}
handover = qcom_q6v5_unprepare(&adsp->q6v5);
if (handover)
qcom_pas_handover(&adsp->q6v5);
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
if (!strcmp(adsp->info_name, "adsp") && sensor_supply_reg_idx > 0)
disable_regulators_sensor_vdd(adsp);
#endif
add_mpss_dsm_mem_ssr_dump(adsp);
adsp_unassign_memory_region(adsp);
adsp->q6v5.seq++;
trace_rproc_qcom_event(dev_name(adsp->dev), "adsp_stop", "exit");
return ret;
}
static void *adsp_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct qcom_adsp *adsp = rproc->priv;
int offset;
offset = da - adsp->mem_phys;
if (offset < 0 || offset + len > adsp->mem_size)
return NULL;
if (is_iomem)
*is_iomem = true;
return adsp->mem_region + offset;
}
static unsigned long adsp_panic(struct rproc *rproc)
{
struct qcom_adsp *adsp = rproc->priv;
return qcom_q6v5_panic(&adsp->q6v5);
}
static const struct rproc_ops adsp_ops = {
.unprepare = adsp_unprepare,
.start = adsp_start,
.stop = adsp_stop,
.da_to_va = adsp_da_to_va,
.load = adsp_load,
.panic = adsp_panic,
};
static const struct rproc_ops adsp_minidump_ops = {
.unprepare = adsp_unprepare,
.start = adsp_start,
.stop = adsp_stop,
.da_to_va = adsp_da_to_va,
.parse_fw = qcom_register_dump_segments,
.load = adsp_load,
.panic = adsp_panic,
.coredump = adsp_minidump,
};
static int adsp_init_clock(struct qcom_adsp *adsp)
{
int ret;
adsp->xo = devm_clk_get(adsp->dev, "xo");
if (IS_ERR(adsp->xo)) {
ret = PTR_ERR(adsp->xo);
if (ret != -EPROBE_DEFER)
dev_err(adsp->dev, "failed to get xo clock");
return ret;
}
adsp->aggre2_clk = devm_clk_get_optional(adsp->dev, "aggre2");
if (IS_ERR(adsp->aggre2_clk)) {
ret = PTR_ERR(adsp->aggre2_clk);
if (ret != -EPROBE_DEFER)
dev_err(adsp->dev,
"failed to get aggre2 clock");
return ret;
}
return 0;
}
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
static bool adsp_need_subsensor(struct device *dev)
{
int upper_c2c_det = -1;
int gpio_level = 0; // low:Set, high:SMD
upper_c2c_det = of_get_named_gpio(dev->of_node,
"upper-c2c-det-gpio", 0);
if (gpio_is_valid(upper_c2c_det)) {
gpio_level = gpio_get_value(upper_c2c_det);
dev_info(dev, "%s: need subsensor(%d):%s\n",
__func__, upper_c2c_det, gpio_level ?
"No(SMD)":"Yes(SET)");
}
return ((gpio_level > 0) ? (false):(true));
}
#endif
static int adsp_init_regulator(struct qcom_adsp *adsp)
{
int len;
int i, rc;
char uv_ua[50];
u32 uv_ua_vals[2];
const char *reg_name;
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
struct device_node *sub_sns_reg_np =
of_find_node_by_name(NULL, "adsp_subsensor_reg");
bool is_adsp_rproc =
(strcmp(adsp->info_name, "adsp") == 0 ? true : false);
int alloc_cnt = 0, ret;
#endif
adsp->reg_cnt = of_property_count_strings(adsp->dev->of_node,
"reg-names");
if (adsp->reg_cnt <= 0) {
dev_err(adsp->dev, "No regulators added!\n");
return 0;
}
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
alloc_cnt = adsp->reg_cnt;
if (is_adsp_rproc && sub_sns_reg_np != NULL) {
is_need_subsensor = adsp_need_subsensor(adsp->dev);
alloc_cnt++;
dev_info(adsp->dev, "%s increase cnt for adsp:%d,%d\n",
__func__, adsp->reg_cnt, alloc_cnt);
}
adsp->regs = devm_kzalloc(adsp->dev,
sizeof(struct reg_info) * alloc_cnt,
GFP_KERNEL);
#else
adsp->regs = devm_kzalloc(adsp->dev,
sizeof(struct reg_info) * adsp->reg_cnt,
GFP_KERNEL);
#endif
if (!adsp->regs)
return -ENOMEM;
for (i = 0; i < adsp->reg_cnt; i++) {
of_property_read_string_index(adsp->dev->of_node, "reg-names",
i, &reg_name);
adsp->regs[i].reg = devm_regulator_get(adsp->dev, reg_name);
if (IS_ERR(adsp->regs[i].reg)) {
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
if (!strcmp(reg_name, PROX_VDD_NAME)) {
if (prox_vdd_retry_cnt > 20) {
dev_info(adsp->dev, "%s ignore %s %d\n",
__func__, reg_name,
adsp->reg_cnt--);
return 0;
} else {
prox_vdd_retry_cnt++;
pr_err("fail to get prox_vdd: cnt %d\n",
prox_vdd_retry_cnt);
return -EPROBE_DEFER;
}
}
#endif
dev_err(adsp->dev, "failed to get %s reg\n", reg_name);
return PTR_ERR(adsp->regs[i].reg);
}
/* Read current(uA) and voltage(uV) value */
snprintf(uv_ua, sizeof(uv_ua), "%s-uV-uA", reg_name);
if (!of_find_property(adsp->dev->of_node, uv_ua, &len))
continue;
rc = of_property_read_u32_array(adsp->dev->of_node, uv_ua,
uv_ua_vals,
ARRAY_SIZE(uv_ua_vals));
if (rc) {
dev_err(adsp->dev, "Failed to read uVuA value(rc:%d)\n",
rc);
return rc;
}
if (uv_ua_vals[0] > 0)
adsp->regs[i].uV = uv_ua_vals[0];
if (uv_ua_vals[1] > 0)
adsp->regs[i].uA = uv_ua_vals[1];
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
if (!strcmp(reg_name, SENSOR_SUPPLY_NAME)) {
dev_info(adsp->dev, "found %s, idx: %d\n", reg_name, i);
sensor_supply_reg_idx = i;
} else if (!strcmp(reg_name, PROX_VDD_NAME)) {
dev_info(adsp->dev, "found %s, idx: %d\n", reg_name, i);
prox_vdd_reg_idx = i;
}
#endif
}
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
if (is_adsp_rproc && sub_sns_reg_np != NULL) {
ret = adsp_init_subsensor_regulator(adsp->rproc, sub_sns_reg_np);
if (ret) {
return ret;
}
}
#endif
return 0;
}
#if IS_ENABLED(CONFIG_SEC_SENSORS_SSC)
int adsp_init_subsensor_regulator(struct rproc *rproc, struct device_node *sub_sns_reg_np)
{
struct qcom_adsp *adsp;
const char *reg_name;
char uv_ua[50];
u32 uv_ua_vals[2];
int len, rc;
if (!rproc) {
pr_err("fail to get adsp_rproc, NULL\n");
return -1;
}
if (!sub_sns_reg_np) {
sub_sns_reg_np = of_find_node_by_name(NULL, "adsp_subsensor_reg");
if (sub_sns_reg_np == NULL) {
pr_info("no subsensor vdd\n");
return 0;
}
}
if (!set_subsensor_vdd_done) {
adsp = (struct qcom_adsp *)rproc->priv;
of_property_read_string(sub_sns_reg_np, "reg-names", &reg_name);
subsensor_supply_reg_idx = adsp->reg_cnt;
adsp->regs[subsensor_supply_reg_idx].reg =
devm_regulator_get_optional(adsp->dev, reg_name);
if (IS_ERR(adsp->regs[subsensor_supply_reg_idx].reg)) {
pr_err("failed to get subsensor:%s reg\n", reg_name);
subsensor_supply_reg_idx = -1;
subsensor_vdd_retry_cnt++;
if (subsensor_vdd_retry_cnt >= SUBSENSOR_VDD_MAX_RETRY) {
pr_err("fail to get subsensor_vdd: retry:%d\n",
subsensor_vdd_retry_cnt);
return 0;
} else {
if (is_need_subsensor) {
pr_err("not found, deferred probe,cnt:%d\n",
subsensor_vdd_retry_cnt);
return -EPROBE_DEFER;
} else {
pr_info("didn't defer in SMD\n");
return 0;
}
}
}
/* Read current(uA) and voltage(uV) value */
snprintf(uv_ua, sizeof(uv_ua), "%s-uV-uA", reg_name);
if (!of_find_property(sub_sns_reg_np, uv_ua, &len)) {
pr_err("%s, uv_ua fail.\n", __func__);
return 0;
}
rc = of_property_read_u32_array(sub_sns_reg_np, uv_ua,
uv_ua_vals,
ARRAY_SIZE(uv_ua_vals));
if (rc) {
pr_err("Failed subsensor uVuA value(rc:%d)\n", rc);
return rc;
}
adsp->reg_cnt++;
if (uv_ua_vals[0] > 0)
adsp->regs[subsensor_supply_reg_idx].uV = uv_ua_vals[0];
if (uv_ua_vals[1] > 0)
adsp->regs[subsensor_supply_reg_idx].uA = uv_ua_vals[1];
set_subsensor_vdd_done = true;
pr_info("found subsensor vdd, idx: %d, total:%d\n",
subsensor_supply_reg_idx, adsp->reg_cnt);
} else {
pr_info("subsensor vdd already set\n");
}
return 0;
}
EXPORT_SYMBOL_GPL(adsp_init_subsensor_regulator);
#endif
static int adsp_pds_attach(struct device *dev, struct device **devs,
char **pd_names)
{
size_t num_pds = 0;
int ret;
int i;
if (!pd_names)
return 0;
/* Handle single power domain */
if (dev->pm_domain) {
devs[0] = dev;
pm_runtime_enable(dev);
return 1;
}
while (pd_names[num_pds])
num_pds++;
for (i = 0; i < num_pds; i++) {
devs[i] = dev_pm_domain_attach_by_name(dev, pd_names[i]);
if (IS_ERR_OR_NULL(devs[i])) {
ret = PTR_ERR(devs[i]) ? : -ENODATA;
goto unroll_attach;
}
}
return num_pds;
unroll_attach:
for (i--; i >= 0; i--)
dev_pm_domain_detach(devs[i], false);
return ret;
};
static void adsp_pds_detach(struct qcom_adsp *adsp, struct device **pds,
size_t pd_count)
{
struct device *dev = adsp->dev;
int i;
/* Handle single power domain */
if (dev->pm_domain && pd_count) {
pm_runtime_disable(dev);
return;
}
for (i = 0; i < pd_count; i++)
dev_pm_domain_detach(pds[i], false);
}
static int adsp_alloc_memory_region(struct qcom_adsp *adsp)
{
struct reserved_mem *rmem;
struct device_node *node;
node = of_parse_phandle(adsp->dev->of_node, "memory-region", 0);
if (!node) {
dev_err(adsp->dev, "no memory-region specified\n");
return -EINVAL;
}
rmem = of_reserved_mem_lookup(node);
of_node_put(node);
if (!rmem) {
dev_err(adsp->dev, "unable to resolve memory-region\n");
return -EINVAL;
}
adsp->mem_phys = adsp->mem_reloc = rmem->base;
adsp->mem_size = rmem->size;
adsp->mem_region = devm_ioremap_wc(adsp->dev, adsp->mem_phys, adsp->mem_size);
if (!adsp->mem_region) {
dev_err(adsp->dev, "unable to map memory region: %pa+%zx\n",
&rmem->base, adsp->mem_size);
return -EBUSY;
}
if (!adsp->dtb_pas_id)
return 0;
node = of_parse_phandle(adsp->dev->of_node, "memory-region", 1);
if (!node) {
dev_err(adsp->dev, "no dtb memory-region specified\n");
return -EINVAL;
}
rmem = of_reserved_mem_lookup(node);
of_node_put(node);
if (!rmem) {
dev_err(adsp->dev, "unable to resolve dtb memory-region\n");
return -EINVAL;
}
adsp->dtb_mem_phys = adsp->dtb_mem_reloc = rmem->base;
adsp->dtb_mem_size = rmem->size;
adsp->dtb_mem_region = devm_ioremap_wc(adsp->dev, adsp->dtb_mem_phys, adsp->dtb_mem_size);
if (!adsp->dtb_mem_region) {
dev_err(adsp->dev, "unable to map dtb memory region: %pa+%zx\n",
&rmem->base, adsp->dtb_mem_size);
return -EBUSY;
}
return 0;
}
static int adsp_setup_32b_dma_allocs(struct qcom_adsp *adsp)
{
int ret;
if (!adsp->dma_phys_below_32b)
return 0;
ret = of_reserved_mem_device_init_by_idx(adsp->dev, adsp->dev->of_node,
adsp->dtb_firmware_name ? 2 : 1);
if (ret) {
dev_err(adsp->dev,
"Unable to get the CMA area for performing dma_alloc_* calls\n");
goto out;
}
ret = dma_set_mask_and_coherent(adsp->dev, DMA_BIT_MASK(32));
if (ret)
dev_err(adsp->dev, "Unable to set the coherent mask to 32-bits!\n");
out:
return ret;
}
static void rproc_recovery_set(struct rproc *rproc)
{
struct qcom_adsp *adsp = (struct qcom_adsp *)rproc->priv;
adsp->subsys_recovery_disabled = rproc->recovery_disabled;
}
void qcom_rproc_update_recovery_status(struct rproc *rproc, bool enable)
{
struct qcom_adsp *adsp;
if (!rproc)
return;
adsp = (struct qcom_adsp *)rproc->priv;
mutex_lock(&rproc->lock);
if (enable) {
/* Save recovery flag */
adsp->subsys_recovery_disabled = rproc->recovery_disabled;
rproc->recovery_disabled = !enable;
pr_info("qcom rproc: %s: recovery enabled by kernel client\n", rproc->name);
} else {
/* Restore recovery flag */
rproc->recovery_disabled = adsp->subsys_recovery_disabled;
pr_info("qcom rproc: %s: recovery disabled by kernel client\n", rproc->name);
}
mutex_unlock(&rproc->lock);
}
EXPORT_SYMBOL_GPL(qcom_rproc_update_recovery_status);
static int adsp_probe(struct platform_device *pdev)
{
const struct adsp_data *desc;
struct qcom_adsp *adsp;
struct rproc *rproc;
const char *fw_name, *dtb_fw_name = NULL;
const struct rproc_ops *ops = &adsp_ops;
char md_dev_name[32];
int ret;
desc = of_device_get_match_data(&pdev->dev);
if (!desc)
return -EINVAL;
if (!qcom_scm_is_available())
return -EPROBE_DEFER;
fw_name = desc->firmware_name;
ret = of_property_read_string(pdev->dev.of_node, "firmware-name",
&fw_name);
if (ret < 0 && ret != -EINVAL)
return ret;
if (desc->dtb_firmware_name) {
dtb_fw_name = desc->dtb_firmware_name;
ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name", 1,
&dtb_fw_name);
if (ret < 0 && ret != -EINVAL)
return ret;
}
if (desc->minidump_id)
ops = &adsp_minidump_ops;
rproc = rproc_alloc(&pdev->dev, pdev->name, ops, fw_name, sizeof(*adsp));
if (!rproc) {
dev_err(&pdev->dev, "unable to allocate remoteproc\n");
return -ENOMEM;
}
rproc->recovery_disabled = true;
rproc->auto_boot = desc->auto_boot;
if (desc->uses_elf64)
rproc_coredump_set_elf_info(rproc, ELFCLASS64, EM_NONE);
else
rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE);
adsp = rproc->priv;
adsp->dev = &pdev->dev;
adsp->rproc = rproc;
adsp->minidump_id = desc->minidump_id;
adsp->pas_id = desc->pas_id;
adsp->info_name = desc->sysmon_name;
adsp->decrypt_shutdown = desc->decrypt_shutdown;
adsp->both_dumps = desc->both_dumps;
adsp->region_assign_idx = desc->region_assign_idx;
adsp->region_assign_count = min_t(int, MAX_ASSIGN_COUNT, desc->region_assign_count);
adsp->region_assign_vmid = desc->region_assign_vmid;
adsp->region_assign_shared = desc->region_assign_shared;
adsp->dma_phys_below_32b = desc->dma_phys_below_32b;
adsp->check_status = desc->check_status;
adsp->subsys_recovery_disabled = true;
if (dtb_fw_name) {
adsp->dtb_firmware_name = dtb_fw_name;
adsp->dtb_pas_id = desc->dtb_pas_id;
}
platform_set_drvdata(pdev, adsp);
ret = device_init_wakeup(adsp->dev, true);
if (ret)
goto free_rproc;
ret = adsp_alloc_memory_region(adsp);
if (ret)
goto free_rproc;
ret = adsp_setup_32b_dma_allocs(adsp);
if (ret)
goto free_rproc;
ret = adsp_init_clock(adsp);
if (ret)
goto free_rproc;
ret = adsp_init_regulator(adsp);
if (ret)
goto free_rproc;
ret = adsp_pds_attach(&pdev->dev, adsp->proxy_pds,
desc->proxy_pd_names);
if (ret < 0)
goto free_rproc;
adsp->proxy_pd_count = ret;
ret = qcom_q6v5_init(&adsp->q6v5, pdev, rproc, desc->crash_reason_smem,
desc->crash_reason_stack, desc->smem_host_id,
desc->load_state, qcom_pas_handover);
if (ret)
goto detach_proxy_pds;
if (adsp->check_status) {
if (rproc_find_status_register(adsp))
goto detach_proxy_pds;
adsp->wake_state = devm_qcom_smem_state_get(&pdev->dev, "wakeup", &adsp->wake_bit);
if (IS_ERR(adsp->wake_state)) {
dev_err(&pdev->dev, "failed to acquire wake state\n");
goto detach_proxy_pds;
}
adsp->sleep_state = devm_qcom_smem_state_get(&pdev->dev, "sleep", &adsp->sleep_bit);
if (IS_ERR(adsp->sleep_state)) {
dev_err(&pdev->dev, "failed to acquire sleep state\n");
goto detach_proxy_pds;
}
mutex_init(&adsp->adsp_lock);
refcount_set(&adsp->current_users, 0);
}
qcom_q6v5_register_ssr_subdev(&adsp->q6v5, &adsp->ssr_subdev.subdev);
qcom_add_glink_subdev(rproc, &adsp->glink_subdev, desc->ssr_name);
qcom_add_smd_subdev(rproc, &adsp->smd_subdev);
adsp->sysmon = qcom_add_sysmon_subdev(rproc,
desc->sysmon_name,
desc->ssctl_id);
if (IS_ERR(adsp->sysmon)) {
ret = PTR_ERR(adsp->sysmon);
goto detach_proxy_pds;
}
ret = device_create_file(adsp->dev, &dev_attr_txn_id);
if (ret)
goto remove_subdevs;
adsp->adsp_wq = alloc_workqueue("ssr_wq",
WQ_UNBOUND | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 0);
BUG_ON(!adsp->adsp_wq);
INIT_WORK(&adsp->ssr_handler, adsp_ssr_handler_work);
ret = device_create_file(adsp->dev, &dev_attr_ssr);
if (ret)
goto remove_attr_txn_id;
snprintf(md_dev_name, ARRAY_SIZE(md_dev_name), "%s-md", pdev->dev.of_node->name);
adsp->minidump_dev = qcom_create_ramdump_device(md_dev_name, NULL);
if (!adsp->minidump_dev)
dev_err(&pdev->dev, "Unable to create %s minidump device.\n", md_dev_name);
qcom_add_ssr_subdev(rproc, &adsp->ssr_subdev, desc->ssr_name);
ret = rproc_add(rproc);
if (ret)
goto destroy_minidump_dev;
/*
* Concurrent stores can happen on the same global variable with
* different subsystem probe, however, as it is happening with
* same value at max, compiler can do is to optimize it away with
* single store compared to multiple store on worst case, so be it.
*/
rproc_recovery_set_fn = rproc_recovery_set;
if (adsp->check_status) {
adsp->panic_blk.priority = INT_MAX - 2;
adsp->panic_blk.notifier_call = rproc_panic_handler;
atomic_notifier_chain_register(&panic_notifier_list, &adsp->panic_blk);
}
return 0;
destroy_minidump_dev:
if (adsp->minidump_dev)
qcom_destroy_ramdump_device(adsp->minidump_dev);
device_remove_file(adsp->dev, &dev_attr_ssr);
remove_attr_txn_id:
device_remove_file(adsp->dev, &dev_attr_txn_id);
remove_subdevs:
qcom_remove_sysmon_subdev(adsp->sysmon);
detach_proxy_pds:
adsp_pds_detach(adsp, adsp->proxy_pds, adsp->proxy_pd_count);
free_rproc:
device_init_wakeup(adsp->dev, false);
rproc_free(rproc);
return ret;
}
static void adsp_remove(struct platform_device *pdev)
{
struct qcom_adsp *adsp = platform_get_drvdata(pdev);
flush_workqueue(adsp->adsp_wq);
destroy_workqueue(adsp->adsp_wq);
rproc_del(adsp->rproc);
qcom_q6v5_deinit(&adsp->q6v5);
if (adsp->minidump_dev)
qcom_destroy_ramdump_device(adsp->minidump_dev);
device_remove_file(adsp->dev, &dev_attr_ssr);
device_remove_file(adsp->dev, &dev_attr_txn_id);
adsp_unassign_memory_region(adsp);
qcom_remove_glink_subdev(adsp->rproc, &adsp->glink_subdev);
qcom_remove_sysmon_subdev(adsp->sysmon);
qcom_remove_smd_subdev(adsp->rproc, &adsp->smd_subdev);
qcom_remove_ssr_subdev(adsp->rproc, &adsp->ssr_subdev);
if (adsp->check_status)
atomic_notifier_chain_unregister(&panic_notifier_list, &adsp->panic_blk);
adsp_pds_detach(adsp, adsp->proxy_pds, adsp->proxy_pd_count);
device_init_wakeup(adsp->dev, false);
rproc_free(adsp->rproc);
}
static const struct adsp_data adsp_resource_init = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.auto_boot = true,
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data sdm845_adsp_resource_init = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.auto_boot = true,
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data sm6350_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"lcx",
"lmx",
NULL
},
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data sm8150_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"cx",
NULL
},
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data sm8250_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"lcx",
"lmx",
NULL
},
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data sm8350_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"lcx",
"lmx",
NULL
},
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data msm8996_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"cx",
NULL
},
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data cdsp_resource_init = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.pas_id = 18,
.auto_boot = true,
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data sdm845_cdsp_resource_init = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.pas_id = 18,
.auto_boot = true,
.load_state = "cdsp",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data sm6350_cdsp_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.pas_id = 18,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"cx",
"mx",
NULL
},
.load_state = "cdsp",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data sm8150_cdsp_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.pas_id = 18,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"cx",
NULL
},
.load_state = "cdsp",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data sm8250_cdsp_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.pas_id = 18,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"cx",
NULL
},
.load_state = "cdsp",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data sc8280xp_nsp0_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.pas_id = 18,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"nsp",
NULL
},
.ssr_name = "cdsp0",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data sc8280xp_nsp1_resource = {
.crash_reason_smem = 633,
.firmware_name = "cdsp.mdt",
.pas_id = 30,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"nsp",
NULL
},
.ssr_name = "cdsp1",
.sysmon_name = "cdsp1",
.ssctl_id = 0x20,
};
static const struct adsp_data sm8350_cdsp_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.pas_id = 18,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"cx",
"mxc",
NULL
},
.load_state = "cdsp",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data mpss_resource_init = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.pas_id = 4,
.minidump_id = 3,
.auto_boot = false,
.proxy_pd_names = (char*[]){
"cx",
"mss",
NULL
},
.load_state = "modem",
.ssr_name = "mpss",
.sysmon_name = "modem",
.ssctl_id = 0x12,
};
static const struct adsp_data sc8180x_mpss_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.pas_id = 4,
.uses_elf64 = true,
.auto_boot = false,
.proxy_pd_names = (char*[]){
"cx",
NULL
},
.load_state = "modem",
.ssr_name = "mpss",
.sysmon_name = "modem",
.ssctl_id = 0x12,
};
static const struct adsp_data msm8996_slpi_resource_init = {
.crash_reason_smem = 424,
.firmware_name = "slpi.mdt",
.pas_id = 12,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"ssc_cx",
NULL
},
.ssr_name = "dsps",
.sysmon_name = "slpi",
.ssctl_id = 0x16,
};
static const struct adsp_data sdm845_slpi_resource_init = {
.crash_reason_smem = 424,
.firmware_name = "slpi.mdt",
.pas_id = 12,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"lcx",
"lmx",
NULL
},
.load_state = "slpi",
.ssr_name = "dsps",
.sysmon_name = "slpi",
.ssctl_id = 0x16,
};
static const struct adsp_data wcss_resource_init = {
.crash_reason_smem = 421,
.firmware_name = "wcnss.mdt",
.pas_id = 6,
.auto_boot = true,
.ssr_name = "mpss",
.sysmon_name = "wcnss",
.ssctl_id = 0x12,
};
static const struct adsp_data sdx55_mpss_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.pas_id = 4,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"cx",
"mss",
NULL
},
.ssr_name = "mpss",
.sysmon_name = "modem",
.ssctl_id = 0x22,
};
static const struct adsp_data sm8450_mpss_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.pas_id = 4,
.minidump_id = 3,
.auto_boot = false,
.decrypt_shutdown = true,
.proxy_pd_names = (char*[]){
"cx",
"mss",
NULL
},
.load_state = "modem",
.ssr_name = "mpss",
.sysmon_name = "modem",
.ssctl_id = 0x12,
};
static const struct adsp_data sm8550_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.dtb_firmware_name = "adsp_dtb.mdt",
.pas_id = 1,
.dtb_pas_id = 0x24,
.minidump_id = 5,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"lcx",
"lmx",
NULL
},
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data sm8550_cdsp_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.dtb_firmware_name = "cdsp_dtb.mdt",
.pas_id = 18,
.dtb_pas_id = 0x25,
.minidump_id = 7,
.auto_boot = true,
.proxy_pd_names = (char*[]){
"cx",
"mxc",
"nsp",
NULL
},
.load_state = "cdsp",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data sm8550_mpss_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.dtb_firmware_name = "modem_dtb.mdt",
.pas_id = 4,
.dtb_pas_id = 0x26,
.minidump_id = 3,
.auto_boot = false,
.decrypt_shutdown = true,
.proxy_pd_names = (char*[]){
"cx",
"mss",
NULL
},
.load_state = "modem",
.ssr_name = "mpss",
.sysmon_name = "modem",
.ssctl_id = 0x12,
.region_assign_idx = 2,
};
static const struct adsp_data sun_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.dtb_firmware_name = "adsp_dtb.mdt",
.pas_id = 1,
.dtb_pas_id = 0x24,
.minidump_id = 5,
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
.uses_elf64 = true,
.auto_boot = true,
.crash_reason_stack = 660,
.smem_host_id = 2,
};
static const struct adsp_data sun_cdsp_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.dtb_firmware_name = "cdsp_dtb.mdt",
.pas_id = 18,
.dtb_pas_id = 0x25,
.minidump_id = 7,
.load_state = "cdsp",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
.uses_elf64 = true,
.region_assign_idx = 2,
.region_assign_count = 1,
.region_assign_shared = true,
.region_assign_vmid = QCOM_SCM_VMID_CDSP,
.auto_boot = true,
.crash_reason_stack = 660,
.smem_host_id = 5,
};
static const struct adsp_data sun_mpss_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.dtb_firmware_name = "modem_dtb.mdt",
.pas_id = 4,
.dtb_pas_id = 0x26,
.minidump_id = 3,
.decrypt_shutdown = true,
.load_state = "modem",
.ssr_name = "mpss",
.uses_elf64 = true,
.sysmon_name = "modem",
.ssctl_id = 0x12,
.region_assign_idx = 3,
.region_assign_count = 2,
.region_assign_vmid = QCOM_SCM_VMID_MSS_MSA,
.dma_phys_below_32b = true,
.both_dumps = true,
};
static const struct adsp_data sun_soccp_resource = {
.crash_reason_smem = 656,
.firmware_name = "soccp.mbn",
.pas_id = 51,
.ssr_name = "soccp",
.sysmon_name = "soccp",
.check_status = true,
.auto_boot = true,
};
static const struct adsp_data pineapple_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.dtb_firmware_name = "adsp_dtb.mdt",
.pas_id = 1,
.dtb_pas_id = 0x24,
.minidump_id = 5,
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
.uses_elf64 = true,
.auto_boot = true,
};
static const struct adsp_data pineapple_cdsp_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.dtb_firmware_name = "cdsp_dtb.mdt",
.pas_id = 18,
.dtb_pas_id = 0x25,
.minidump_id = 7,
.load_state = "cdsp",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
.uses_elf64 = true,
.region_assign_idx = 2,
.region_assign_count = 1,
.region_assign_shared = true,
.region_assign_vmid = QCOM_SCM_VMID_CDSP,
.auto_boot = true,
};
static const struct adsp_data pineapple_mpss_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.dtb_firmware_name = "modem_dtb.mdt",
.pas_id = 4,
.dtb_pas_id = 0x26,
.minidump_id = 3,
.decrypt_shutdown = true,
.load_state = "modem",
.ssr_name = "mpss",
.uses_elf64 = true,
.sysmon_name = "modem",
.ssctl_id = 0x12,
.region_assign_idx = 3,
.region_assign_count = 2,
.region_assign_vmid = QCOM_SCM_VMID_MSS_MSA,
.dma_phys_below_32b = true,
};
static const struct adsp_data parrot_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.minidump_id = 5,
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
.uses_elf64 = true,
.auto_boot = false,
};
static const struct adsp_data parrot_cdsp_resource = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.pas_id = 18,
.minidump_id = 7,
.load_state = "cdsp",
.uses_elf64 = true,
.auto_boot = true,
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
};
static const struct adsp_data parrot_mpss_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.pas_id = 4,
.minidump_id = 3,
.load_state = "modem",
.uses_elf64 = true,
.auto_boot = false,
.ssr_name = "mpss",
.sysmon_name = "modem",
.ssctl_id = 0x12,
.dma_phys_below_32b = true,
.decrypt_shutdown = true,
.both_dumps = true,
};
static const struct adsp_data parrot_wpss_resource = {
.crash_reason_smem = 626,
.firmware_name = "wpss.mdt",
.pas_id = 6,
.minidump_id = 4,
.load_state = "wpss",
.uses_elf64 = true,
.ssr_name = "wpss",
.sysmon_name = "wpss",
.ssctl_id = 0x19,
};
static const struct adsp_data ravelin_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.minidump_id = 5,
.load_state = "adsp",
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
.uses_elf64 = true,
.auto_boot = false,
};
static const struct adsp_data ravelin_mpss_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.pas_id = 4,
.minidump_id = 3,
.load_state = "modem",
.uses_elf64 = true,
.auto_boot = false,
.ssr_name = "mpss",
.sysmon_name = "modem",
.ssctl_id = 0x12,
.dma_phys_below_32b = true,
.decrypt_shutdown = true,
.both_dumps = true,
};
static const struct adsp_data ravelin_wpss_resource = {
.crash_reason_smem = 626,
.firmware_name = "wpss.mdt",
.pas_id = 6,
.minidump_id = 4,
.load_state = "wpss",
.uses_elf64 = true,
.ssr_name = "wpss",
.sysmon_name = "wpss",
.ssctl_id = 0x19,
};
static const struct adsp_data monaco_adsp_resource = {
.crash_reason_smem = 423,
.firmware_name = "adsp.mdt",
.pas_id = 1,
.minidump_id = 5,
.uses_elf64 = false,
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
};
static const struct adsp_data monaco_modem_resource = {
.crash_reason_smem = 421,
.firmware_name = "modem.mdt",
.pas_id = 4,
.minidump_id = 3,
.uses_elf64 = true,
.ssr_name = "mpss",
.sysmon_name = "modem",
.ssctl_id = 0x12,
};
static const struct of_device_id adsp_of_match[] = {
{ .compatible = "qcom,msm8226-adsp-pil", .data = &adsp_resource_init},
{ .compatible = "qcom,msm8953-adsp-pil", .data = &msm8996_adsp_resource},
{ .compatible = "qcom,msm8974-adsp-pil", .data = &adsp_resource_init},
{ .compatible = "qcom,msm8996-adsp-pil", .data = &msm8996_adsp_resource},
{ .compatible = "qcom,msm8996-slpi-pil", .data = &msm8996_slpi_resource_init},
{ .compatible = "qcom,msm8998-adsp-pas", .data = &msm8996_adsp_resource},
{ .compatible = "qcom,msm8998-slpi-pas", .data = &msm8996_slpi_resource_init},
{ .compatible = "qcom,qcs404-adsp-pas", .data = &adsp_resource_init },
{ .compatible = "qcom,qcs404-cdsp-pas", .data = &cdsp_resource_init },
{ .compatible = "qcom,qcs404-wcss-pas", .data = &wcss_resource_init },
{ .compatible = "qcom,sc7180-mpss-pas", .data = &mpss_resource_init},
{ .compatible = "qcom,sc7280-mpss-pas", .data = &mpss_resource_init},
{ .compatible = "qcom,sc8180x-adsp-pas", .data = &sm8150_adsp_resource},
{ .compatible = "qcom,sc8180x-cdsp-pas", .data = &sm8150_cdsp_resource},
{ .compatible = "qcom,sc8180x-mpss-pas", .data = &sc8180x_mpss_resource},
{ .compatible = "qcom,sc8280xp-adsp-pas", .data = &sm8250_adsp_resource},
{ .compatible = "qcom,sc8280xp-nsp0-pas", .data = &sc8280xp_nsp0_resource},
{ .compatible = "qcom,sc8280xp-nsp1-pas", .data = &sc8280xp_nsp1_resource},
{ .compatible = "qcom,sdm660-adsp-pas", .data = &adsp_resource_init},
{ .compatible = "qcom,sdm845-adsp-pas", .data = &sdm845_adsp_resource_init},
{ .compatible = "qcom,sdm845-cdsp-pas", .data = &sdm845_cdsp_resource_init},
{ .compatible = "qcom,sdm845-slpi-pas", .data = &sdm845_slpi_resource_init},
{ .compatible = "qcom,sdx55-mpss-pas", .data = &sdx55_mpss_resource},
{ .compatible = "qcom,sm6115-adsp-pas", .data = &adsp_resource_init},
{ .compatible = "qcom,sm6115-cdsp-pas", .data = &cdsp_resource_init},
{ .compatible = "qcom,sm6115-mpss-pas", .data = &sc8180x_mpss_resource},
{ .compatible = "qcom,sm6350-adsp-pas", .data = &sm6350_adsp_resource},
{ .compatible = "qcom,sm6350-cdsp-pas", .data = &sm6350_cdsp_resource},
{ .compatible = "qcom,sm6350-mpss-pas", .data = &mpss_resource_init},
{ .compatible = "qcom,sm8150-adsp-pas", .data = &sm8150_adsp_resource},
{ .compatible = "qcom,sm8150-cdsp-pas", .data = &sm8150_cdsp_resource},
{ .compatible = "qcom,sm8150-mpss-pas", .data = &mpss_resource_init},
{ .compatible = "qcom,sm8150-slpi-pas", .data = &sdm845_slpi_resource_init},
{ .compatible = "qcom,sm8250-adsp-pas", .data = &sm8250_adsp_resource},
{ .compatible = "qcom,sm8250-cdsp-pas", .data = &sm8250_cdsp_resource},
{ .compatible = "qcom,sm8250-slpi-pas", .data = &sdm845_slpi_resource_init},
{ .compatible = "qcom,sm8350-adsp-pas", .data = &sm8350_adsp_resource},
{ .compatible = "qcom,sm8350-cdsp-pas", .data = &sm8350_cdsp_resource},
{ .compatible = "qcom,sm8350-slpi-pas", .data = &sdm845_slpi_resource_init},
{ .compatible = "qcom,sm8350-mpss-pas", .data = &mpss_resource_init},
{ .compatible = "qcom,sm8450-adsp-pas", .data = &sm8350_adsp_resource},
{ .compatible = "qcom,sm8450-cdsp-pas", .data = &sm8350_cdsp_resource},
{ .compatible = "qcom,sm8450-slpi-pas", .data = &sdm845_slpi_resource_init},
{ .compatible = "qcom,sm8450-mpss-pas", .data = &sm8450_mpss_resource},
{ .compatible = "qcom,sm8550-adsp-pas", .data = &sm8550_adsp_resource},
{ .compatible = "qcom,sm8550-cdsp-pas", .data = &sm8550_cdsp_resource},
{ .compatible = "qcom,sm8550-mpss-pas", .data = &sm8550_mpss_resource},
{ .compatible = "qcom,pineapple-adsp-pas", .data = &pineapple_adsp_resource},
{ .compatible = "qcom,pineapple-cdsp-pas", .data = &pineapple_cdsp_resource},
{ .compatible = "qcom,pineapple-modem-pas", .data = &pineapple_mpss_resource},
{ .compatible = "qcom,sun-adsp-pas", .data = &sun_adsp_resource},
{ .compatible = "qcom,sun-cdsp-pas", .data = &sun_cdsp_resource},
{ .compatible = "qcom,sun-modem-pas", .data = &sun_mpss_resource},
{ .compatible = "qcom,sun-soccp-pas", .data = &sun_soccp_resource},
{ .compatible = "qcom,parrot-adsp-pas", .data = &parrot_adsp_resource},
{ .compatible = "qcom,parrot-cdsp-pas", .data = &parrot_cdsp_resource},
{ .compatible = "qcom,parrot-modem-pas", .data = &parrot_mpss_resource},
{ .compatible = "qcom,parrot-wpss-pas", .data = &parrot_wpss_resource},
{ .compatible = "qcom,ravelin-adsp-pas", .data = &ravelin_adsp_resource},
{ .compatible = "qcom,ravelin-modem-pas", .data = &ravelin_mpss_resource},
{ .compatible = "qcom,ravelin-wpss-pas", .data = &ravelin_wpss_resource},
{ .compatible = "qcom,monaco-adsp-pas", .data = &monaco_adsp_resource},
{ .compatible = "qcom,monaco-modem-pas", .data = &monaco_modem_resource},
{ },
};
MODULE_DEVICE_TABLE(of, adsp_of_match);
static struct platform_driver adsp_driver = {
.probe = adsp_probe,
.remove_new = adsp_remove,
.driver = {
.name = "qcom_q6v5_pas",
.of_match_table = adsp_of_match,
},
};
module_platform_driver(adsp_driver);
MODULE_DESCRIPTION("Qualcomm Hexagon v5 Peripheral Authentication Service driver");
MODULE_LICENSE("GPL v2");