Files
2025-08-12 22:16:57 +02:00

1884 lines
48 KiB
C
Executable File

/******************************************************************************
*
* Copyright 2012-2023 NXP
* *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
******************************************************************************/
/**
* \addtogroup spi_driver
*
* @{ */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/irq.h>
#include <linux/jiffies.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/miscdevice.h>
#include <linux/spinlock.h>
#include <linux/spi/spi.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include <linux/ktime.h>
#include <linux/regulator/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/spi/spidev.h>
#include <linux/of_platform.h>
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
#include <linux/rcupdate.h>
#if IS_ENABLED(CONFIG_SPI_MSM_GENI)
#include "nfc_wakelock.h"
#if IS_ENABLED(CONFIG_MSM_GENI_SE)
#include <linux/msm-geni-se.h>
#include <linux/msm_gpi.h>
#endif
#endif
#endif
#include "p73.h"
#include "common_ese.h"
#include "ese_reset.h"
#define DRAGON_P61 0
/* Device driver's configuration macro */
/* Macro to configure poll/interrupt based req*/
#undef P61_IRQ_ENABLE
//#define P61_IRQ_ENABLE
/* Macro to configure Hard/Soft reset to P61 */
//#define P61_HARD_RESET
#undef P61_HARD_RESET
#ifdef P61_HARD_RESET
static struct regulator *p61_regulator = NULL;
#else
#endif
#define P61_IRQ 33 /* this is the same used in omap3beagle.c */
#define P61_RST 138
/* Macro to define SPI clock frequency */
//#define P61_SPI_CLOCK_7Mzh
#undef P61_SPI_CLOCK_7Mzh
#undef P61_SPI_CLOCK_13_3_Mzh
#undef P61_SPI_CLOCK_8Mzh
#undef P61_SPI_CLOCK_20Mzh
#define P61_SPI_CLOCK_25Mzh
#ifdef P61_SPI_CLOCK_13_3_Mzh
//#define P61_SPI_CLOCK 13300000L;Further debug needed
#define P61_SPI_CLOCK 19000000L;
#else
#ifdef P61_SPI_CLOCK_7Mzh
#define P61_SPI_CLOCK 7000000L;
#else
#ifdef P61_SPI_CLOCK_8Mzh
#define P61_SPI_CLOCK 8000000L;
#else
#ifdef P61_SPI_CLOCK_20Mzh
#define P61_SPI_CLOCK 20000000L;
#else
#ifdef P61_SPI_CLOCK_25Mzh
#define P61_SPI_CLOCK 25000000L;
#else
#define P61_SPI_CLOCK 4000000L;
#endif
#endif
#endif
#endif
#endif
/* size of maximum read/write buffer supported by driver */
#ifdef MAX_BUFFER_SIZE
#undef MAX_BUFFER_SIZE
#endif //MAX_BUFFER_SIZE
#define MAX_BUFFER_SIZE 780U
/* Different driver debug lever */
enum P61_DEBUG_LEVEL {
P61_DEBUG_OFF,
P61_FULL_DEBUG
};
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
static char *p61_pinctrl_name[] = {"ese_off", "ese_on", "lpm", "default", "active", "suspend"};
enum p61_pin_ctrl {
P61_PIN_CTRL_ESE_OFF,
P61_PIN_CTRL_ESE_ON,
P61_PIN_CTRL_LPM,
P61_PIN_CTRL_DEFAULT,
P61_PIN_CTRL_ACTIVE,
P61_PIN_CTRL_SUSPEND,
P61_PIN_CTRL_MAX
};
#endif
/* Variable to store current debug level request by ioctl */
static unsigned char debug_level;
static DEFINE_MUTEX(open_close_mutex);
#define P61_DBG_MSG(msg...) \
switch(debug_level) \
{ \
case P61_DEBUG_OFF: \
break; \
case P61_FULL_DEBUG: \
printk(KERN_INFO "[NXP-P61] : " msg); \
break; \
default: \
printk(KERN_ERR "[NXP-P61] : Wrong debug level %d", debug_level); \
break; \
} \
#define P61_ERR_MSG(msg...) printk(KERN_ERR "[NFC-P61] : " msg );
/* Device specific macro and structure */
struct p61_dev {
wait_queue_head_t read_wq; /* wait queue for read interrupt */
struct mutex read_mutex; /* read mutex */
struct mutex write_mutex; /* write mutex */
struct spi_device *spi; /* spi device structure */
struct miscdevice p61_device; /* char device as misc driver */
int rst_gpio; /* SW Reset gpio */
int irq_gpio; /* P61 will interrupt DH for any ntf */
bool irq_enabled; /* flag to indicate irq is used */
unsigned char enable_poll_mode; /* enable the poll mode */
spinlock_t irq_enabled_lock; /*spin lock for read irq */
int trusted_ese_gpio; /* i/p to eSE to distunguish trusted Session */
ese_spi_transition_state_t ese_spi_transition_state; /* State of the driver */
struct device *nfcc_device; /*nfcc driver handle for driver to driver comm */
struct nfc_dev *nfcc_data;
const char *nfcc_name;
bool gpio_coldreset;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
int ap_vendor;
struct device_node *nfc_node;
struct pinctrl *pinctrl;
struct pinctrl_state *pinctrl_state[P61_PIN_CTRL_MAX];
struct platform_device *spi_pdev;
struct nfc_wake_lock ese_lock;
int open_pid;
int release_pid;
char open_task_name[TASK_COMM_LEN];
char release_task_name[TASK_COMM_LEN];
#if IS_ENABLED(CONFIG_SPI_MSM_GENI)
struct delayed_work spi_release_work;
struct nfc_wake_lock spi_release_wakelock;
#endif
#endif
unsigned char *r_buf;
unsigned char *w_buf;
};
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
struct device *g_nfc_device;
struct p61_dev *g_p61_dev;
#endif
/* T==1 protocol specific global data */
const unsigned char SOF = 0xA5u;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
static void p61_get_task_info(struct p61_dev *p61_dev, char *task_name, int *pid)
{
struct task_struct *task;
if (!p61_dev)
return;
rcu_read_lock();
*pid = task_pid_nr(current);
task = pid_task(find_vpid(*pid), PIDTYPE_PID);
if (task) {
memcpy(task_name, task->comm, TASK_COMM_LEN);
task_name[TASK_COMM_LEN - 1] = '\0';
}
rcu_read_unlock();
}
static void p61_init_task_info(struct p61_dev *p61_dev)
{
p61_dev->open_pid = 0;
p61_dev->release_pid = 0;
memset(p61_dev->open_task_name, 0, TASK_COMM_LEN);
memset(p61_dev->release_task_name, 0, TASK_COMM_LEN);
}
void p61_print_status(const char *func_name)
{
struct p61_dev *p61_dev = g_p61_dev;
if (!p61_dev)
return;
NFC_LOG_INFO("%s: state=%d o_pid=%d rel_pid=%d o_task=%s rel_task=%s\n",
func_name, p61_dev->ese_spi_transition_state,
p61_dev->open_pid,
p61_dev->release_pid,
p61_dev->open_task_name,
p61_dev->release_task_name);
}
static void p61_pinctrl_select(struct p61_dev *p61_dev, enum p61_pin_ctrl stat)
{
int ret;
NFC_LOG_INFO("pinctrl[%s]\n", p61_pinctrl_name[stat]);
if (!p61_dev->pinctrl || !p61_dev->pinctrl_state[stat])
return;
ret = pinctrl_select_state(p61_dev->pinctrl, p61_dev->pinctrl_state[stat]);
if (ret < 0)
NFC_LOG_INFO("pinctrl[%d] failed\n", stat);
}
#if IS_ENABLED(CONFIG_SPI_MSM_GENI)
static void p61_spi_release_work(struct work_struct *work)
{
struct p61_dev *p61_dev = g_p61_dev;
if (p61_dev == NULL) {
NFC_LOG_ERR("%s: spi probe is not called\n", __func__);
return;
}
NFC_LOG_INFO("release ese spi\n");
p61_pinctrl_select(p61_dev, P61_PIN_CTRL_SUSPEND); /* for QC AP */
}
#endif
#endif
/**
* \ingroup spi_driver
* \brief Will be called on device close to release resources
*
* \param[in] struct inode *
* \param[in] struct file *
*
* \retval 0 if ok.
*
*/
static int p61_dev_release(struct inode *inode, struct file *filp)
{
struct p61_dev *p61_dev = NULL;
NFC_LOG_INFO("Enter %s: ESE driver release\n", __func__);
mutex_lock(&open_close_mutex);
p61_dev = filp->private_data;
p61_dev->ese_spi_transition_state = ESE_SPI_IDLE;
#if !IS_ENABLED(CONFIG_SAMSUNG_NFC)
gpio_set_value(p61_dev->trusted_ese_gpio, 0);
#endif
nfc_ese_pwr(p61_dev->nfcc_data, ESE_RST_PROT_DIS);
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
p61_pinctrl_select(p61_dev, P61_PIN_CTRL_ESE_OFF); /* for LSI AP */
#if IS_ENABLED(CONFIG_SPI_MSM_GENI)
schedule_delayed_work(&p61_dev->spi_release_work,
msecs_to_jiffies(2000));
wake_lock_timeout(&p61_dev->spi_release_wakelock,
msecs_to_jiffies(2100));
#endif
if (wake_lock_active(&p61_dev->ese_lock))
wake_unlock(&p61_dev->ese_lock);
#endif
mutex_unlock(&open_close_mutex);
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
p61_get_task_info(p61_dev, p61_dev->release_task_name, &p61_dev->release_pid);
p61_print_status(__func__);
#endif
NFC_LOG_INFO("Exit %s: ESE driver release\n", __func__);
return 0;
}
static int p61_xfer(struct p61_dev *p61_dev,
struct p61_ioctl_transfer *tr)
{
int status = 0;
struct spi_message m;
struct spi_transfer t;
static u32 read_try_cnt;
/*For SDM845 & linux4.9: need to change spi buffer
* from stack to dynamic memory
*/
if (p61_dev == NULL || tr == NULL)
return -EFAULT;
if (tr->len > MAX_BUFFER_SIZE || !tr->len)
return -EMSGSIZE;
spi_message_init(&m);
memset(&t, 0, sizeof(t));
memset(p61_dev->w_buf, 0, tr->len); /*memset 0 for write */
memset(p61_dev->r_buf, 0, tr->len); /*memset 0 for read */
if (tr->tx_buffer != NULL) { /*write */
if (copy_from_user(p61_dev->w_buf, tr->tx_buffer, tr->len) != 0) {
NFC_LOG_ERR("p61_wr: copy_from_user fail %d\n", tr->len);
status = -EFAULT;
goto xfer_exit;
}
}
t.rx_buf = p61_dev->r_buf;
t.tx_buf = p61_dev->w_buf;
t.len = tr->len;
spi_message_add_tail(&t, &m);
status = spi_sync(p61_dev->spi, &m);
if (status == 0) {
if (tr->rx_buffer != NULL) { /*read */
unsigned long missing = 0;
missing = copy_to_user(tr->rx_buffer, p61_dev->r_buf, tr->len);
if (missing != 0)
tr->len = tr->len - (unsigned int)missing;
}
}
if (tr->tx_buffer != NULL) {
if (read_try_cnt)
NFC_LOG_REC("p61w%d try%u\n", tr->len, read_try_cnt);
else
NFC_LOG_REC("p61w%d\n", tr->len);
}
if (tr->rx_buffer != NULL) {
if (tr->len == 2 && ((p61_dev->r_buf[0] == 0x0 && p61_dev->r_buf[2] == 0x0) ||
(p61_dev->r_buf[0] == 0xff && p61_dev->r_buf[2] == 0xff))) {
read_try_cnt++;
} else {
if (read_try_cnt)
NFC_LOG_REC("p61r%d try%u\n", tr->len, read_try_cnt);
else
NFC_LOG_REC("p61r%d\n", tr->len);
read_try_cnt = 0;
}
}
xfer_exit:
return status;
} /* vfsspi_xfer */
static int p61_rw_spi_message(struct p61_dev *p61_dev,
unsigned long arg)
{
struct p61_ioctl_transfer *dup = NULL;
int err = 0;
dup = kmalloc(sizeof(struct p61_ioctl_transfer), GFP_KERNEL);
if (dup == NULL)
return -ENOMEM;
if (copy_from_user(dup, (void *)arg,
sizeof(struct p61_ioctl_transfer)) != 0) {
kfree(dup);
return -EFAULT;
}
err = p61_xfer(p61_dev, dup);
if (err != 0) {
kfree(dup);
NFC_LOG_ERR("%s: p61_xfer failed, %d\n", __func__, err);
return err;
}
if (copy_to_user((void *)arg, dup,
sizeof(struct p61_ioctl_transfer)) != 0) {
kfree(dup);
return -EFAULT;
}
kfree(dup);
return 0;
}
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
void store_nfc_i2c_device(struct device *nfc_i2c_dev)
{
g_nfc_device = nfc_i2c_dev;
}
#endif
#ifdef CONFIG_COMPAT
static int p61_rw_spi_message_compat(struct p61_dev *p61_dev,
unsigned long arg)
{
struct p61_ioctl_transfer32 __user *argp = compat_ptr(arg);
struct p61_ioctl_transfer32 it32;
struct p61_ioctl_transfer *dup = NULL;
int err = 0;
dup = kmalloc(sizeof(struct p61_ioctl_transfer), GFP_KERNEL);
if (dup == NULL)
return -ENOMEM;
if (copy_from_user(&it32, argp, sizeof(it32))) {
kfree(dup);
return -EFAULT;
}
dup->rx_buffer = (__u8 *)(uintptr_t)it32.rx_buffer;
dup->tx_buffer = (__u8 *)(uintptr_t)it32.tx_buffer;
dup->len = it32.len;
err = p61_xfer(p61_dev, dup);
if (err != 0) {
kfree(dup);
NFC_LOG_ERR("%s: p61_xfer failed, %d\n", __func__, err);
return err;
}
if (it32.rx_buffer) {
if (__put_user(dup->len, &argp->len)) {
kfree(dup);
return -EFAULT;
}
}
kfree(dup);
return 0;
}
#endif /*CONFIG_COMPAT */
/**
* \ingroup spi_driver
* \brief Called from SPI LibEse to initilaize the P61 device
*
* \param[in] struct inode *
* \param[in] struct file *
*
* \retval 0 if ok.
*
*/
static int p61_dev_open(struct inode *inode, struct file *filp)
{
#ifdef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
struct p61_dev *p61_dev = g_p61_dev;
if (p61_dev == NULL) {
NFC_LOG_ERR("%s: spi probe is not called\n", __func__);
return -EAGAIN;
}
#else
struct p61_dev
*p61_dev = container_of(filp->private_data,
struct p61_dev,
p61_device);
#endif
/* Find the NFC parent device if it exists. */
if (p61_dev != NULL && p61_dev->nfcc_data == NULL) {
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
struct device *nfc_dev = g_nfc_device;
if (!nfc_dev) {
NFC_LOG_ERR("%s: cannot find NFC controller\n", __func__);
return -ENODEV;
}
#else
struct device *nfc_dev = bus_find_device_by_name(&i2c_bus_type, NULL,
p61_dev->nfcc_name);
if (!nfc_dev) {
NFC_LOG_ERR("%s: cannot find NFC controller '%s'\n", __func__,
p61_dev->nfcc_name);
return -ENODEV;
}
#endif
p61_dev->nfcc_data = dev_get_drvdata(nfc_dev);
if (!p61_dev->nfcc_data) {
NFC_LOG_ERR("%s: cannot find NFC controller device data\n", __func__);
put_device(nfc_dev);
return -ENODEV;
}
P61_DBG_MSG("%s: NFC controller found\n", __func__);
p61_dev->nfcc_device = nfc_dev;
}
mutex_lock(&open_close_mutex);
filp->private_data = p61_dev;
if(p61_dev->ese_spi_transition_state == ESE_SPI_BUSY) {
NFC_LOG_ERR("%s : ESE is busy\n", __func__);
mutex_unlock(&open_close_mutex);
return -EBUSY;
}
p61_dev->ese_spi_transition_state = ESE_SPI_BUSY;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
/* for checking previous open/close tasks */
p61_print_status("p61_dev_open pre");
#if IS_ENABLED(CONFIG_SPI_MSM_GENI)
cancel_delayed_work_sync(&p61_dev->spi_release_work);
#endif
if (!wake_lock_active(&p61_dev->ese_lock))
wake_lock(&p61_dev->ese_lock);
p61_pinctrl_select(p61_dev, P61_PIN_CTRL_ESE_ON);
if (p61_dev->ap_vendor != AP_VENDOR_QCT)
msleep(60);
#endif
mutex_unlock(&open_close_mutex);
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
p61_init_task_info(p61_dev);
p61_get_task_info(p61_dev, p61_dev->open_task_name, &p61_dev->open_pid);
p61_print_status(__func__);
#endif
return 0;
}
/**
* \ingroup spi_driver
* \brief To configure the P61_SET_PWR/P61_SET_DBG/P61_SET_POLL
* \n P61_SET_PWR - hard reset (arg=2), soft reset (arg=1)
* \n P61_SET_DBG - Enable/Disable (based on arg value) the driver logs
* \n P61_SET_POLL - Configure the driver in poll (arg = 1), interrupt (arg = 0) based read operation
* \param[in] struct file *
* \param[in] unsigned int
* \param[in] unsigned long
*
* \retval 0 if ok.
*
*/
static long p61_dev_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
int ret = 0;
struct p61_dev *p61_dev = NULL;
#if !IS_ENABLED(CONFIG_SAMSUNG_NFC)
unsigned char buf[100];
#endif
P61_DBG_MSG(KERN_ALERT "p61_dev_ioctl-Enter %u arg = %ld\n", cmd, arg);
p61_dev = filp->private_data;
switch (cmd) {
case P61_SET_PWR:
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
if (arg == 2)
NFC_LOG_INFO("[NXP-P61] - P61_SET_PWR. No Action.\n");
#else
if (arg == 2) {
#ifdef P61_HARD_RESET
P61_DBG_MSG(KERN_ALERT " Disabling p61_regulator");
if (p61_regulator != NULL) {
regulator_disable(p61_regulator);
msleep(50);
regulator_enable(p61_regulator);
P61_DBG_MSG(KERN_ALERT " Enabling p61_regulator");
} else {
NFC_LOG_ERR(KERN_ALERT " ERROR : p61_regulator is not enabled\n");
}
#endif
} else if (arg == 1) {
P61_DBG_MSG(KERN_ALERT " Soft Reset");
//gpio_set_value(p61_dev->rst_gpio, 1);
//msleep(20);
gpio_set_value(p61_dev->rst_gpio, 0);
msleep(50);
ret = spi_read(p61_dev->spi, (void *)buf, sizeof(buf));
msleep(50);
gpio_set_value(p61_dev->rst_gpio, 1);
msleep(20);
}
#endif
break;
case P61_SET_DBG:
debug_level = (unsigned char)arg;
NFC_LOG_INFO("[NXP-P61] - Debug level %d\n",
debug_level);
break;
case P61_SET_POLL:
p61_dev->enable_poll_mode = (unsigned char)arg;
if (p61_dev->enable_poll_mode == 0) {
NFC_LOG_INFO("[NXP-P61] - IRQ Mode is set\n");
} else {
NFC_LOG_INFO("[NXP-P61] - Poll Mode is set\n");
p61_dev->enable_poll_mode = 1;
}
break;
case P61_RW_SPI_DATA:
ret = p61_rw_spi_message(p61_dev, arg);
break;
case P61_SET_SPM_PWR:
NFC_LOG_INFO("P61_SET_SPM_PWR: enter\n");
ret = nfc_ese_pwr(p61_dev->nfcc_data, arg);
NFC_LOG_INFO("P61_SET_SPM_PWR: exit\n");
break;
case P61_GET_SPM_STATUS:
NFC_LOG_INFO("P61_GET_SPM_STATUS: enter\n");
ret = nfc_ese_pwr(p61_dev->nfcc_data, ESE_POWER_STATE);
NFC_LOG_INFO("P61_GET_SPM_STATUS: exiti\n");
break;
case P61_SET_DWNLD_STATUS:
NFC_LOG_INFO("P61_SET_DWNLD_STATUS: enter\n");
//ret = nfc_dev_ioctl(filp, PN544_SET_DWNLD_STATUS, arg);
NFC_LOG_INFO("P61_SET_DWNLD_STATUS: =%lu exit\n", arg);
break;
case P61_GET_ESE_ACCESS:
NFC_LOG_INFO("P61_GET_ESE_ACCESS: enter\n");
//ret = nfc_dev_ioctl(filp, P544_GET_ESE_ACCESS, arg);
NFC_LOG_INFO("P61_GET_ESE_ACCESS ret: %d exit\n", ret);
break;
case P61_SET_POWER_SCHEME:
NFC_LOG_INFO("P61_SET_POWER_SCHEME: enter\n");
//ret = nfc_dev_ioctl(filp, P544_SET_POWER_SCHEME, arg);
NFC_LOG_INFO("P61_SET_POWER_SCHEME ret: %d exit\n",
ret);
break;
case P61_INHIBIT_PWR_CNTRL:
NFC_LOG_INFO("P61_INHIBIT_PWR_CNTRL: enter\n");
//ret = nfc_dev_ioctl(filp, P544_SECURE_TIMER_SESSION, arg);
NFC_LOG_INFO("P61_INHIBIT_PWR_CNTRL ret: %d exit\n",
ret);
break;
case ESE_PERFORM_COLD_RESET:
NFC_LOG_INFO("ESE_PERFORM_COLD_RESET: enter\n");
if (p61_dev->gpio_coldreset)
ret = perform_ese_gpio_reset(p61_dev->rst_gpio);
else
ret = nfc_ese_pwr(p61_dev->nfcc_data, ESE_CLD_RST);
NFC_LOG_INFO("ESE_PERFORM_COLD_RESET ret: %d exit\n", ret);
break;
case PERFORM_RESET_PROTECTION:
if (p61_dev->gpio_coldreset) {
NFC_LOG_INFO("PERFORM_RESET_PROTECTION is not required and not supported\n");
} else {
NFC_LOG_INFO("PERFORM_RESET_PROTECTION: enter\n");
ret = nfc_ese_pwr(p61_dev->nfcc_data,
(arg == 1 ? ESE_RST_PROT_EN : ESE_RST_PROT_DIS));
NFC_LOG_INFO("PERFORM_RESET_PROTECTION ret: %d exit\n", ret);
}
break;
case ESE_SET_TRUSTED_ACCESS:
NFC_LOG_INFO("Enter %s: TRUSTED access enabled=%lu\n", __func__, arg);
#if !IS_ENABLED(CONFIG_SAMSUNG_NFC)
if(arg == 1) {
NFC_LOG_INFO("ESE_SET_TRUSTED_ACCESS: enter Enabling\n");
gpio_set_value(p61_dev->trusted_ese_gpio, 1);
NFC_LOG_INFO("ESE_SET_TRUSTED_ACCESS ret: exit\n");
} else if (arg == 0) {
NFC_LOG_INFO("ESE_SET_TRUSTED_ACCESS: enter Disabling\n");
gpio_set_value(p61_dev->trusted_ese_gpio, 0);
NFC_LOG_INFO("ESE_SET_TRUSTED_ACCESS ret: exit\n");
}
#endif
break;
default:
NFC_LOG_ERR("Error case\n");
ret = -EINVAL;
}
P61_DBG_MSG(KERN_ALERT "p61_dev_ioctl-exit %u arg = %lu\n", cmd, arg);
return ret;
}
#ifdef CONFIG_COMPAT
/**
* \ingroup spi_driver
* \brief To configure the P61_SET_PWR/P61_SET_DBG/P61_SET_POLL
* \n P61_SET_PWR - hard reset (arg=2), soft reset (arg=1)
* \n P61_SET_DBG - Enable/Disable (based on arg value) the driver logs
* \n P61_SET_POLL - Configure the driver in poll (arg = 1), interrupt (arg = 0) based read operation
* \param[in] struct file *
* \param[in] unsigned int
* \param[in] unsigned long
*
* \retval 0 if ok.
*
*/
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
static long p61_dev_compat_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
int ret = 0;
struct p61_dev *p61_dev = NULL;
if (_IOC_TYPE(cmd) != P61_MAGIC)
return -ENOTTY;
p61_dev = filp->private_data;
switch (cmd) {
case P61_SET_PWR_COMPAT:
if (arg == 2)
NFC_LOG_INFO("%s: P61_SET_PWR. No Action.\n", __func__);
break;
case P61_SET_DBG_COMPAT:
debug_level = (unsigned char)arg;
P61_DBG_MSG(KERN_INFO"[NXP-P61] - Debug level %d",
debug_level);
break;
case P61_SET_POLL_COMPAT:
p61_dev->enable_poll_mode = (unsigned char)arg;
if (p61_dev->enable_poll_mode == 0) {
P61_DBG_MSG(KERN_INFO"[NXP-P61] - IRQ Mode is set\n");
} else {
P61_DBG_MSG(KERN_INFO"[NXP-P61] - Poll Mode is set\n");
p61_dev->enable_poll_mode = 1;
}
break;
case P61_RW_SPI_DATA_COMPAT:
ret = p61_rw_spi_message_compat(p61_dev, arg);
break;
case P61_SET_SPM_PWR_COMPAT:
NFC_LOG_INFO("%s: P61_SET_SPM_PWR: enter\n", __func__);
ret = nfc_ese_pwr(p61_dev->nfcc_data, arg);
NFC_LOG_INFO("%s: P61_SET_SPM_PWR: exit\n", __func__);
break;
case P61_GET_SPM_STATUS_COMPAT:
NFC_LOG_INFO("%s: P61_GET_SPM_STATUS: enter\n", __func__);
ret = nfc_ese_pwr(p61_dev->nfcc_data, ESE_POWER_STATE);
NFC_LOG_INFO("%s: P61_GET_SPM_STATUS: exit\n", __func__);
break;
case P61_SET_DWNLD_STATUS_COMPAT:
NFC_LOG_INFO("P61_SET_DWNLD_STATUS: enter\n");
//ret = pn547_dev_ioctl(filp, PN547_SET_DWNLD_STATUS, arg);
NFC_LOG_INFO("%s: P61_SET_DWNLD_STATUS: =%lu exit\n", __func__, arg);
break;
case P61_GET_ESE_ACCESS_COMPAT:
NFC_LOG_INFO("P61_GET_ESE_ACCESS: enter\n");
//ret = pn547_dev_ioctl(filp, P547_GET_ESE_ACCESS, arg);
NFC_LOG_INFO("P61_GET_ESE_ACCESS ret: %d exit\n", ret);
break;
case P61_SET_POWER_SCHEME_COMPAT:
NFC_LOG_INFO("P61_SET_POWER_SCHEME: enter\n");
//ret = pn547_dev_ioctl(filp, P544_SET_POWER_SCHEME, arg);
NFC_LOG_INFO("P61_SET_POWER_SCHEME ret: %d exit\n",
ret);
break;
case P61_INHIBIT_PWR_CNTRL_COMPAT:
NFC_LOG_INFO("P61_INHIBIT_PWR_CNTRL: enter\n");
//ret = pn547_dev_ioctl(filp, P544_SECURE_TIMER_SESSION, arg);
NFC_LOG_INFO("P61_INHIBIT_PWR_CNTRL ret: %d exit\n",
ret);
break;
case ESE_PERFORM_COLD_RESET_COMPAT:
NFC_LOG_INFO("ESE_PERFORM_COLD_RESET: enter\n");
if (p61_dev->gpio_coldreset)
ret = perform_ese_gpio_reset(p61_dev->rst_gpio);
else
ret = nfc_ese_pwr(p61_dev->nfcc_data, ESE_CLD_RST);
NFC_LOG_INFO("ESE_PERFORM_COLD_RESET ret: %d exit\n", ret);
break;
case PERFORM_RESET_PROTECTION_COMPAT:
if (p61_dev->gpio_coldreset) {
NFC_LOG_INFO("PERFORM_RESET_PROTECTION is not required and not supported\n");
} else {
NFC_LOG_INFO("PERFORM_RESET_PROTECTION: enter\n");
ret = nfc_ese_pwr(p61_dev->nfcc_data,
(arg == 1 ? ESE_RST_PROT_EN : ESE_RST_PROT_DIS));
NFC_LOG_INFO("PERFORM_RESET_PROTECTION ret: %d exit\n", ret);
}
break;
case ESE_SET_TRUSTED_ACCESS:
NFC_LOG_INFO("Enter %s: TRUSTED access enabled=%lu\n", __func__, arg);
#if !IS_ENABLED(CONFIG_SAMSUNG_NFC)
if (arg == 1) {
NFC_LOG_INFO("ESE_SET_TRUSTED_ACCESS: enter Enabling\n");
gpio_set_value(p61_dev->trusted_ese_gpio, 1);
NFC_LOG_INFO("ESE_SET_TRUSTED_ACCESS ret: exit\n");
} else if (arg == 0) {
NFC_LOG_INFO("ESE_SET_TRUSTED_ACCESS: enter Disabling\n");
gpio_set_value(p61_dev->trusted_ese_gpio, 0);
NFC_LOG_INFO("ESE_SET_TRUSTED_ACCESS ret: exit\n");
}
#endif
break;
default:
NFC_LOG_INFO("%s: no matching ioctl!\n", __func__);
ret = -EINVAL;
}
P61_DBG_MSG(KERN_ALERT "%s %u arg = %lu\n", __func__, cmd, arg);
return ret;
}
#else
static long p61_dev_compat_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
int ret = 0;
arg = (compat_u64)arg;
NFC_LOG_INFO(KERN_ALERT "%s-Enter %u arg = %ld\n", __func__, cmd, arg);
NFC_LOG_DBG("%s: cmd = %x arg = %zx\n", __func__, cmd, arg);
ret = p61_dev_ioctl(filp, cmd, arg);
return ret;
}
#endif
#endif
/**
* \ingroup spi_driver
* \brief Write data to P61 on SPI
*
* \param[in] struct file *
* \param[in] const char *
* \param[in] size_t
* \param[in] loff_t *
*
* \retval data size
*
*/
static ssize_t p61_dev_write(struct file *filp, const char *buf, size_t count,
loff_t * offset)
{
int ret = -1;
struct p61_dev *p61_dev;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
unsigned char *tx_buffer;
#else
unsigned char tx_buffer[MAX_BUFFER_SIZE];
#endif
P61_DBG_MSG(KERN_ALERT "p61_dev_write -Enter count %zu\n", count);
p61_dev = filp->private_data;
mutex_lock(&p61_dev->write_mutex);
if (count > MAX_BUFFER_SIZE)
count = MAX_BUFFER_SIZE;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
tx_buffer = p61_dev->w_buf;
memset(&tx_buffer[0], 0, MAX_BUFFER_SIZE);
#else
memset(&tx_buffer[0], 0, sizeof(tx_buffer));
#endif
if (copy_from_user(&tx_buffer[0], &buf[0], count)) {
NFC_LOG_ERR("%s: failed to copy from user space\n", __func__);
mutex_unlock(&p61_dev->write_mutex);
return -EFAULT;
}
/* Write data */
ret = spi_write(p61_dev->spi, &tx_buffer[0], count);
if (ret < 0) {
NFC_LOG_ERR("%s: spi_write fail %d\n", __func__, ret);
ret = -EIO;
} else {
ret = count;
}
mutex_unlock(&p61_dev->write_mutex);
NFC_LOG_REC("%s ret %d- Exit\n", __func__, ret);
return ret;
}
#ifdef P61_IRQ_ENABLE
/**
* \ingroup spi_driver
* \brief To disable IRQ
*
* \param[in] struct p61_dev *
*
* \retval void
*
*/
static void p61_disable_irq(struct p61_dev *p61_dev)
{
unsigned long flags;
P61_DBG_MSG("Entry : %s\n", __func__);
spin_lock_irqsave(&p61_dev->irq_enabled_lock, flags);
if (p61_dev->irq_enabled) {
disable_irq_nosync(p61_dev->spi->irq);
p61_dev->irq_enabled = false;
}
spin_unlock_irqrestore(&p61_dev->irq_enabled_lock, flags);
P61_DBG_MSG("Exit : %s\n", __func__);
}
/**
* \ingroup spi_driver
* \brief Will get called when interrupt line asserted from P61
*
* \param[in] int
* \param[in] void *
*
* \retval IRQ handle
*
*/
static irqreturn_t p61_dev_irq_handler(int irq, void *dev_id)
{
struct p61_dev *p61_dev = dev_id;
P61_DBG_MSG("Entry : %s\n", __func__);
p61_disable_irq(p61_dev);
/* Wake up waiting readers */
wake_up(&p61_dev->read_wq);
P61_DBG_MSG("Exit : %s\n", __func__);
return IRQ_HANDLED;
}
#endif
/**
* \ingroup spi_driver
* \brief Used to read data from P61 in Poll/interrupt mode configured using ioctl call
*
* \param[in] struct file *
* \param[in] char *
* \param[in] size_t
* \param[in] loff_t *
*
* \retval read size
*
*/
static ssize_t p61_dev_read(struct file *filp, char *buf, size_t count,
loff_t * offset)
{
int ret = -EIO;
struct p61_dev *p61_dev = filp->private_data;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
unsigned char *rx_buffer = p61_dev->r_buf;
#else
unsigned char rx_buffer[MAX_BUFFER_SIZE];
#endif
NFC_LOG_REC("%s count %zu - Enter\n", __func__, count);
mutex_lock(&p61_dev->read_mutex);
if (count > MAX_BUFFER_SIZE) {
count = MAX_BUFFER_SIZE;
}
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
memset(&rx_buffer[0], 0x00, MAX_BUFFER_SIZE);
#else
memset(&rx_buffer[0], 0x00, sizeof(rx_buffer));
#endif
if (p61_dev->enable_poll_mode) {
NFC_LOG_REC("%s Poll Mode Enabled\n", __func__);
NFC_LOG_REC("SPI_READ returned %zu\n", count);
ret = spi_read(p61_dev->spi, (void *)&rx_buffer[0], count);
if (0 > ret) {
NFC_LOG_ERR("spi_read failed [SOF]\n");
goto fail;
}
} else {
#ifdef P61_IRQ_ENABLE
NFC_LOG_REC("%s Interrupt Mode Enabled\n", __func__);
if (!gpio_get_value(p61_dev->irq_gpio)) {
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
goto fail;
}
while (1) {
NFC_LOG_REC("%s waiting for interrupt\n", __func__);
p61_dev->irq_enabled = true;
enable_irq(p61_dev->spi->irq);
ret = wait_event_interruptible(p61_dev->read_wq, !p61_dev->irq_enabled);
p61_disable_irq(p61_dev);
if (ret) {
NFC_LOG_ERR("wait_event_interruptible() : Failed\n");
goto fail;
}
if (gpio_get_value(p61_dev->irq_gpio))
break;
NFC_LOG_ERR("%s: spurious interrupt detected\n", __func__);
}
}
#else
NFC_LOG_REC(" %s P61_IRQ_ENABLE not Enabled\n", __func__);
#endif
ret = spi_read(p61_dev->spi, (void *)&rx_buffer[0], count);
if (0 > ret) {
NFC_LOG_ERR("SPI_READ returned 0x%x\n", ret);
ret = -EIO;
goto fail;
}
}
NFC_LOG_REC("total_count = %zu\n", count);
if (copy_to_user(buf, &rx_buffer[0], count)) {
NFC_LOG_ERR("%s : failed to copy to user space\n", __func__);
ret = -EFAULT;
goto fail;
}
NFC_LOG_REC("%s ret %d Exit\n", __func__, ret);
NFC_LOG_REC("%s ret %d Exit\n", __func__, rx_buffer[0]);
mutex_unlock(&p61_dev->read_mutex);
return ret;
fail:
NFC_LOG_ERR("Error %s ret %d Exit\n", __func__, ret);
mutex_unlock(&p61_dev->read_mutex);
return ret;
}
/**
* \ingroup spi_driver
* \brief It will configure the GPIOs required for soft reset, read interrupt & regulated power supply to P61.
*
* \param[in] struct p61_spi_platform_data *
* \param[in] struct p61_dev *
* \param[in] struct spi_device *
*
* \retval 0 if ok.
*
*/
#if !IS_ENABLED(CONFIG_SAMSUNG_NFC)
static int p61_hw_setup(struct p61_spi_platform_data *platform_data,
struct p61_dev *p61_dev, struct spi_device *spi)
{
int ret = -1;
NFC_LOG_INFO("Entry : %s\n", __func__);
#ifdef P61_IRQ_ENABLE
ret = gpio_request(platform_data->irq_gpio, "p61 irq");
if (ret < 0) {
NFC_LOG_ERR("gpio request failed gpio = 0x%x\n", platform_data->irq_gpio);
goto fail;
}
ret = gpio_direction_input(platform_data->irq_gpio);
if (ret < 0) {
NFC_LOG_ERR("gpio request failed gpio = 0x%x\n", platform_data->irq_gpio);
goto fail_irq;
}
#endif
#ifdef P61_HARD_RESET
/* RC : platform specific settings need to be declare */
#if !DRAGON_P61
p61_regulator = regulator_get(&spi->dev, "vaux3");
#else
p61_regulator = regulator_get(&spi->dev, "8941_l18");
#endif
if (IS_ERR(p61_regulator)) {
ret = PTR_ERR(p61_regulator);
#if !DRAGON_P61
NFC_LOG_ERR(" Error to get vaux3 (error code) = %d\n", ret);
#else
NFC_LOG_ERR(" Error to get 8941_l18 (error code) = %d\n", ret);
#endif
return -ENODEV;
} else {
NFC_LOG_INFO("successfully got regulator\n");
}
ret = regulator_set_voltage(p61_regulator, 1800000, 1800000);
if (ret != 0) {
NFC_LOG_ERR("Error setting the regulator voltage %d\n", ret);
regulator_put(p61_regulator);
return ret;
} else {
regulator_enable(p61_regulator);
NFC_LOG_INFO("successfully set regulator voltage\n");
}
ret = gpio_request(platform_data->rst_gpio, "p61 reset");
if (ret < 0) {
NFC_LOG_ERR("gpio reset request failed = 0x%x\n", platform_data->rst_gpio);
goto fail_gpio;
}
/*soft reset gpio is set to default high */
ret = gpio_direction_output(platform_data->rst_gpio, 1);
if (ret < 0) {
NFC_LOG_ERR("gpio rst request failed gpio = 0x%x\n", platform_data->rst_gpio);
goto fail_gpio;
}
#endif
ret = gpio_request( platform_data->trusted_ese_gpio, "Trusted SE switch");
if (ret < 0) {
NFC_LOG_ERR("gpio reset request failed = 0x%x\n",
platform_data->trusted_ese_gpio);
gpio_free(platform_data->trusted_ese_gpio);
NFC_LOG_ERR("%s failed\n", __func__);
return ret;
}
ret = gpio_direction_output(platform_data->trusted_ese_gpio,0);
if (ret < 0) {
NFC_LOG_ERR("gpio rst request failed gpio = 0x%x\n",
platform_data->trusted_ese_gpio);
gpio_free(platform_data->trusted_ese_gpio);
NFC_LOG_ERR("%s failed\n, __func__");
return ret;
}
ret = ese_reset_gpio_setup(platform_data);
if (ret < 0) {
P61_ERR_MSG("Failed to setup ese reset gpio");
goto fail;
}
ret = 0;
NFC_LOG_INFO("Exit : %s\n", __func__);
return ret;
#ifdef P61_IRQ_ENABLE
fail_irq:
gpio_free(platform_data->irq_gpio);
#endif
fail:
NFC_LOG_ERR("p61_hw_setup failed\n");
return ret;
}
#endif
/**
* \ingroup spi_driver
* \brief Set the P61 device specific context for future use.
*
* \param[in] struct spi_device *
* \param[in] void *
*
* \retval void
*
*/
static inline void p61_set_data(struct spi_device *spi, void *data)
{
dev_set_drvdata(&spi->dev, data);
}
/**
* \ingroup spi_driver
* \brief Get the P61 device specific context.
*
* \param[in] const struct spi_device *
*
* \retval Device Parameters
*
*/
static inline void *p61_get_data(const struct spi_device *spi)
{
return dev_get_drvdata(&spi->dev);
}
/* possible fops on the p61 device */
static const struct file_operations p61_dev_fops = {
.owner = THIS_MODULE,
.read = p61_dev_read,
.write = p61_dev_write,
.open = p61_dev_open,
.release = p61_dev_release,
.unlocked_ioctl = p61_dev_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = p61_dev_compat_ioctl,
#endif
};
#if DRAGON_P61 || IS_ENABLED(CONFIG_SAMSUNG_NFC)
static int p61_parse_dt(struct device *dev, struct p61_spi_platform_data *data)
{
struct device_node *np = dev->of_node;
int errorno = 0;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
int ese_det_gpio;
const char *ap_str;
int ret;
ese_det_gpio = of_get_named_gpio(np, "ese-det-gpio", 0);
if (!gpio_is_valid(ese_det_gpio)) {
NFC_LOG_INFO("%s: ese-det-gpio is not set\n", __func__);
} else {
ret = gpio_request(ese_det_gpio, "ese_det_gpio");
if (ret < 0)
NFC_LOG_ERR("%s failed to get gpio ese_det_gpio\n", __func__);
gpio_direction_input(ese_det_gpio);
if (!gpio_get_value(ese_det_gpio)) {
NFC_LOG_INFO("%s: ese is not supported\n", __func__);
return -ENODEV;
}
NFC_LOG_INFO("%s: ese is supported\n", __func__);
}
if (!of_property_read_string(np, "p61,ap_vendor", &ap_str)) {
if (!strcmp(ap_str, "slsi"))
data->ap_vendor = AP_VENDOR_SLSI;
else if (!strcmp(ap_str, "qct") || !strcmp(ap_str, "qualcomm"))
data->ap_vendor = AP_VENDOR_QCT;
else if (!strcmp(ap_str, "mtk"))
data->ap_vendor = AP_VENDOR_MTK;
NFC_LOG_INFO("AP vendor is %d\n", data->ap_vendor);
} else {
NFC_LOG_INFO("AP vendor is not set\n");
}
data->gpio_coldreset = of_property_read_bool(np, "p61,gpio_coldreset_support");
if (data->gpio_coldreset) {
NFC_LOG_INFO("gpio coldreset supports\n");
data->rst_gpio = of_get_named_gpio(np, "p61,gpio-rst", 0);
if ((!gpio_is_valid(data->rst_gpio)))
return -EINVAL;
}
#else
data->irq_gpio = of_get_named_gpio(np, "nxp,p61-irq", 0);
if ((!gpio_is_valid(data->irq_gpio)))
return -EINVAL;
data->rst_gpio = of_get_named_gpio(np, "nxp,p61-rst", 0);
if ((!gpio_is_valid(data->rst_gpio)))
return -EINVAL;
data->trusted_ese_gpio = of_get_named_gpio(np, "nxp,trusted-se", 0);
if ((!gpio_is_valid(data->trusted_ese_gpio)))
return -EINVAL;
NFC_LOG_INFO("%s: %d, %d, %d %d\n", __func__, data->irq_gpio, data->rst_gpio,
data->trusted_ese_gpio, errorno);
#endif
return errorno;
}
#endif
#if IS_ENABLED(CONFIG_SPI_MSM_GENI)
#if IS_ENABLED(CONFIG_MSM_GENI_SE)
/*
* eSE driver can't access spi_geni_master structure because it's defined in drivers/spi/spi-msm-geni.c file.
* so, we need a logic to search se_geni_rsc in "void *spi_geni_master".
*/
struct se_geni_rsc *p61_find_spi_src(struct p61_dev *p61_dev, void *spi_geni_master)
{
char *offset = spi_geni_master;
struct se_geni_rsc *rsc;
int i;
int max_addr_cnt = 250;
for (i = 0; i < max_addr_cnt; i++) {
rsc = (struct se_geni_rsc *)offset;
if (rsc->geni_gpio_active == p61_dev->pinctrl_state[P61_PIN_CTRL_DEFAULT]) {
NFC_LOG_INFO("%s, found se_geni_rsc!\n", __func__);
return rsc;
}
offset++;
}
/* Check if spi_geni_master structure member which defined in spi-msm-geni.c file is changed or not when failed to find se_geni_src. */
NFC_LOG_ERR("%s, failed to find se_geni_rsc!\n", __func__);
return 0;
}
#else
/* CONFIG_QCOM_GENI_SE */
struct qc_spi_pinctrl {
struct pinctrl *geni_pinctrl;
struct pinctrl_state *geni_gpio_active;
struct pinctrl_state *geni_gpio_sleep;
};
struct qc_spi_pinctrl *p61_find_spi_src(struct p61_dev *p61_dev, void *spi_geni_master)
{
char *offset = spi_geni_master;
struct qc_spi_pinctrl *spi_pinctrl;
int i;
int max_addr_cnt = 250;
for (i = 0; i < max_addr_cnt; i++) {
spi_pinctrl = (struct qc_spi_pinctrl *)offset;
if (spi_pinctrl->geni_pinctrl == p61_dev->pinctrl &&
spi_pinctrl->geni_gpio_active == p61_dev->pinctrl_state[P61_PIN_CTRL_DEFAULT]) {
NFC_LOG_INFO("%s, found pinctrl in spi master!\n", __func__);
return spi_pinctrl;
}
offset++;
}
NFC_LOG_ERR("%s, failed to find spi pinctrl!\n", __func__);
return 0;
}
#endif
static void p61_set_spi_bus_pincontrol(struct p61_dev *p61_dev)
{
struct spi_master *master;
void *geni_mas;
#if IS_ENABLED(CONFIG_MSM_GENI_SE)
struct se_geni_rsc *spi_pinctrl;
#else
struct qc_spi_pinctrl *spi_pinctrl;
#endif
static bool called;
if (!p61_dev || called)
return;
if (!p61_dev->pinctrl_state[P61_PIN_CTRL_ACTIVE] || !p61_dev->pinctrl_state[P61_PIN_CTRL_SUSPEND])
return;
NFC_LOG_INFO("%s\n", __func__);
called = true;
master = platform_get_drvdata(p61_dev->spi_pdev);
geni_mas = spi_master_get_devdata(master);
spi_pinctrl = p61_find_spi_src(p61_dev, geni_mas);
if (spi_pinctrl) {
spi_pinctrl->geni_gpio_sleep =
pinctrl_lookup_state(spi_pinctrl->geni_pinctrl,
p61_pinctrl_name[P61_PIN_CTRL_SUSPEND]);
spi_pinctrl->geni_gpio_active =
pinctrl_lookup_state(spi_pinctrl->geni_pinctrl,
p61_pinctrl_name[P61_PIN_CTRL_ACTIVE]);
}
}
#endif
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
static void p61_parse_pinctrl_dt(struct device *dev, struct p61_dev *p61_dev)
{
struct device_node *spi_dev_node;
struct device_node *np = dev->of_node;
struct platform_device *spi_pdev;
struct pinctrl_state *tmp_pinctrl;
int i;
spi_dev_node = of_get_parent(np);
if (IS_ERR_OR_NULL(spi_dev_node)) {
NFC_LOG_INFO("no spi pinctrl\n");
return;
}
spi_pdev = of_find_device_by_node(spi_dev_node);
if (!spi_pdev) {
NFC_LOG_ERR("finding spi_dev failed\n");
return;
}
p61_dev->pinctrl = devm_pinctrl_get(&spi_pdev->dev);
if (IS_ERR(p61_dev->pinctrl)) {
NFC_LOG_ERR("pinctrl_get failed\n");
return;
}
for (i = 0; i < P61_PIN_CTRL_MAX; i++) {
tmp_pinctrl = pinctrl_lookup_state(p61_dev->pinctrl, p61_pinctrl_name[i]);
if (!IS_ERR(tmp_pinctrl)) {
NFC_LOG_INFO("pinctrl[%s] found\n", p61_pinctrl_name[i]);
p61_dev->pinctrl_state[i] = tmp_pinctrl;
}
}
p61_dev->spi_pdev = spi_pdev;
#if IS_ENABLED(CONFIG_SPI_MSM_GENI)
p61_set_spi_bus_pincontrol(p61_dev);
#endif
if (nfc_check_pvdd_status())
ese_set_spi_pinctrl_for_ese_off(p61_dev);
}
void ese_set_spi_pinctrl_for_ese_off(void *p61)
{
struct p61_dev *p61_dev = (struct p61_dev *)p61;
if (!p61_dev)
p61_dev = g_p61_dev;
if (!p61_dev) {
pr_err("%s: spi probe is not called\n", __func__);
return;
}
p61_pinctrl_select(p61_dev, P61_PIN_CTRL_ESE_OFF); /* for LSI AP */
p61_pinctrl_select(p61_dev, P61_PIN_CTRL_SUSPEND); /* for QC AP */
}
#endif
/**
* \ingroup spi_driver
* \brief To probe for P61 SPI interface. If found initialize the SPI clock, bit rate & SPI mode.
* It will create the dev entry (P61) for user space.
*
* \param[in] struct spi_device *
*
* \retval 0 if ok.
*
*/
static int p61_probe(struct spi_device *spi)
{
int ret = -1;
struct p61_spi_platform_data *platform_data = NULL;
struct p61_spi_platform_data platform_data1;
struct p61_dev *p61_dev = NULL;
unsigned int max_speed_hz;
struct device_node *np = spi->dev.of_node;
#ifdef P61_IRQ_ENABLE
unsigned int irq_flags;
#endif
#ifdef CONFIG_SEC_NFC_LOGGER
nfc_logger_init();
nfc_logger_set_max_count(-1);
#endif
NFC_LOG_INFO("%s chip select : %d , bus number = %d\n", __func__,
spi->chip_select, spi->master->bus_num);
memset(&platform_data1, 0x00, sizeof(struct p61_spi_platform_data));
#if !DRAGON_P61 && !IS_ENABLED(CONFIG_SAMSUNG_NFC)
platform_data = spi->dev.platform_data;
if (platform_data == NULL) {
/* RC : rename the platformdata1 name */
/* TBD: This is only for Panda as we are passing NULL for platform data */
NFC_LOG_ERR("%s : p61 probe fail\n", __func__);
platform_data1.irq_gpio = P61_IRQ;
platform_data1.rst_gpio = P61_RST;
platform_data = &platform_data1;
NFC_LOG_ERR("%s : p61 probe fail1\n", __func__);
//return -ENODEV;
}
#else
ret = p61_parse_dt(&spi->dev, &platform_data1);
if (ret) {
NFC_LOG_ERR("%s - Failed to parse DT\n", __func__);
goto err_exit;
}
platform_data = &platform_data1;
#endif
p61_dev = kzalloc(sizeof(*p61_dev), GFP_KERNEL);
if (p61_dev == NULL) {
NFC_LOG_ERR("failed to allocate memory for module data\n");
ret = -ENOMEM;
goto err_exit;
}
#if !IS_ENABLED(CONFIG_SAMSUNG_NFC)
ret = p61_hw_setup(platform_data, p61_dev, spi);
if (ret < 0) {
NFC_LOG_ERR("Failed to p61_enable_P61_IRQ_ENABLE\n");
goto err_exit0;
}
#endif
if (platform_data->gpio_coldreset) {
ret = ese_reset_gpio_setup(platform_data);
if (ret < 0) {
P61_ERR_MSG("Failed to setup ese reset gpio");
goto err_exit0;
}
}
/* gpio cold reset doesn't work. so, set gpio coldreset to false to use i2c cold reset */
platform_data->gpio_coldreset = false;
spi->bits_per_word = 8;
spi->mode = SPI_MODE_0;
ret = of_property_read_u32(np, "spi-max-frequency", &max_speed_hz);
if (ret < 0) {
NFC_LOG_ERR("%s: There's no spi-max-frequency property\n", __func__);
goto err_exit0;
}
spi->max_speed_hz = max_speed_hz;
NFC_LOG_INFO("%s : spi max_speed_hz = %d\n", __func__, spi->max_speed_hz);
//spi->chip_select = SPI_NO_CS;
ret = spi_setup(spi);
if (ret < 0) {
NFC_LOG_ERR("failed to do spi_setup()\n");
goto err_exit0;
}
p61_dev->spi = spi;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
p61_parse_pinctrl_dt(&spi->dev, p61_dev);
#endif
#ifndef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
p61_dev->p61_device.minor = MISC_DYNAMIC_MINOR;
p61_dev->p61_device.name = "p61";
p61_dev->p61_device.fops = &p61_dev_fops;
p61_dev->p61_device.parent = &spi->dev;
#endif
p61_dev->irq_gpio = platform_data->irq_gpio;
p61_dev->rst_gpio = platform_data->rst_gpio;
p61_dev->trusted_ese_gpio = platform_data->trusted_ese_gpio;
p61_dev->gpio_coldreset = platform_data->gpio_coldreset;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
p61_dev->ap_vendor = platform_data->ap_vendor;
#else
p61_dev->trusted_ese_gpio = platform_data->trusted_ese_gpio;
#endif
p61_dev->ese_spi_transition_state = ESE_SPI_IDLE;
dev_set_drvdata(&spi->dev, p61_dev);
/* init mutex and queues */
init_waitqueue_head(&p61_dev->read_wq);
mutex_init(&p61_dev->read_mutex);
mutex_init(&p61_dev->write_mutex);
if (p61_dev->gpio_coldreset)
ese_reset_init();
#ifdef P61_IRQ_ENABLE
spin_lock_init(&p61_dev->irq_enabled_lock);
#endif
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
p61_dev->nfc_node = of_parse_phandle(np, "nxp,nfcc", 0);
if (!p61_dev->nfc_node) {
NFC_LOG_ERR("%s: nxp,nfcc invalid or missing in device tree\n", __func__);
goto err_exit0;
}
#else
ret = of_property_read_string(np, "nxp,nfcc", &p61_dev->nfcc_name);
if (ret < 0) {
NFC_LOG_ERR("%s: nxp,nfcc invalid or missing in device tree (%d)\n",
__func__, ret);
goto err_exit0;
}
NFC_LOG_INFO("%s: device tree set '%s' as eSE power controller\n",
__func__, p61_dev->nfcc_name);
#endif
#ifndef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
ret = misc_register(&p61_dev->p61_device);
if (ret < 0) {
NFC_LOG_ERR("misc_register failed! %d\n", ret);
goto err_exit0;
}
#endif
#ifdef P61_IRQ_ENABLE
p61_dev->spi->irq = gpio_to_irq(platform_data->irq_gpio);
if (p61_dev->spi->irq < 0) {
NFC_LOG_ERR("gpio_to_irq request failed gpio = 0x%x\n",
platform_data->irq_gpio);
goto err_exit1;
}
/* request irq. the irq is set whenever the chip has data available
* for reading. it is cleared when all data has been read.
*/
p61_dev->irq_enabled = true;
irq_flags = IRQF_TRIGGER_RISING | IRQF_ONESHOT;
ret = request_irq(p61_dev->spi->irq, p61_dev_irq_handler, irq_flags,
p61_dev->p61_device.name, p61_dev);
if (ret) {
NFC_LOG_ERR("request_irq failed\n");
goto err_exit1;
}
p61_disable_irq(p61_dev);
#endif
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
p61_dev->r_buf = kzalloc(sizeof(unsigned char) * MAX_BUFFER_SIZE, GFP_KERNEL);
if (p61_dev->r_buf == NULL) {
NFC_LOG_ERR("failed to allocate for spi read buffer\n");
ret = -ENOMEM;
goto err_exit2;
}
p61_dev->w_buf = kzalloc(sizeof(unsigned char) * MAX_BUFFER_SIZE, GFP_KERNEL);
if (p61_dev->w_buf == NULL) {
NFC_LOG_ERR("failed to allocate for spi write buffer\n");
ret = -ENOMEM;
goto err_exit3;
}
wake_lock_init(&p61_dev->ese_lock, WAKE_LOCK_SUSPEND, "ese_lock");
#if IS_ENABLED(CONFIG_SPI_MSM_GENI)
INIT_DELAYED_WORK(&p61_dev->spi_release_work, p61_spi_release_work);
wake_lock_init(&p61_dev->spi_release_wakelock, WAKE_LOCK_SUSPEND, "ese_spi_wake_lock");
#endif
#endif
p61_dev->enable_poll_mode = 0; /* Default IRQ read mode */
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
g_p61_dev = p61_dev;
#endif
NFC_LOG_INFO("Exit : %s\n", __func__);
return ret;
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
err_exit3:
kfree(p61_dev->r_buf);
err_exit2:
#endif
#ifdef P61_IRQ_ENABLE
err_exit1:
#ifndef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
misc_deregister(&p61_dev->p61_device);
#endif
#endif
err_exit0:
mutex_destroy(&p61_dev->read_mutex);
mutex_destroy(&p61_dev->write_mutex);
if (p61_dev->gpio_coldreset)
ese_reset_deinit();
if (p61_dev != NULL)
kfree(p61_dev);
err_exit:
NFC_LOG_ERR("ERROR: Exit : %s ret %d\n", __func__, ret);
return ret;
}
#ifdef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
static struct miscdevice p61_misc_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = "p61",
.fops = &p61_dev_fops,
};
static int p61_platform_probe(struct platform_device *pdev)
{
int ret = -1;
ret = misc_register(&p61_misc_device);
if (ret < 0)
NFC_LOG_ERR("misc_register failed! %d\n", ret);
NFC_LOG_INFO("%s: finished...\n", __func__);
return 0;
}
static int p61_platform_remove(struct platform_device *pdev)
{
NFC_LOG_INFO("Entry : %s\n", __func__);
return 0;
}
static const struct of_device_id p61_secure_match_table[] = {
{ .compatible = "p61_platform",},
{},
};
static struct platform_driver p61_platform_driver = {
.driver = {
.name = "p61_platform",
.owner = THIS_MODULE,
#ifdef CONFIG_OF
.of_match_table = p61_secure_match_table,
#endif
},
.probe = p61_platform_probe,
.remove = p61_platform_remove,
};
#endif /* CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE */
/**
* \ingroup spi_driver
* \brief Will get called when the device is removed to release the resources.
*
* \param[in] struct spi_device
*
* \retval 0 if ok.
*
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(6, 1, 0)
static int p61_remove(struct spi_device *spi)
#else
static void p61_remove(struct spi_device *spi)
#endif
{
struct p61_dev *p61_dev = p61_get_data(spi);
P61_DBG_MSG("Entry : %s\n", __func__);
#ifdef P61_HARD_RESET
if (p61_regulator != NULL) {
regulator_disable(p61_regulator);
regulator_put(p61_regulator);
} else {
NFC_LOG_ERR("ERROR %s p61_regulator not enabled\n", __func__);
}
#endif
if (p61_dev != NULL) {
gpio_free(p61_dev->rst_gpio);
#ifdef P61_IRQ_ENABLE
free_irq(p61_dev->spi->irq, p61_dev);
gpio_free(p61_dev->irq_gpio);
#endif
#if !IS_ENABLED(CONFIG_SAMSUNG_NFC)
if (gpio_is_valid(p61_dev->trusted_ese_gpio)) {
gpio_free(p61_dev->trusted_ese_gpio);
}
#endif
mutex_destroy(&p61_dev->read_mutex);
#ifdef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
misc_deregister(&p61_misc_device);
#else
misc_deregister(&p61_dev->p61_device);
#endif
if (p61_dev->gpio_coldreset)
ese_reset_deinit();
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
wake_lock_destroy(&p61_dev->ese_lock);
#endif
kfree(p61_dev);
}
P61_DBG_MSG("Exit : %s\n", __func__);
#if LINUX_VERSION_CODE < KERNEL_VERSION(6, 1, 0)
return 0;
#endif
}
#if DRAGON_P61
static struct of_device_id p61_dt_match[] = {
{
.compatible = "p61",
},
{}
};
#endif
static struct spi_driver p61_driver = {
.driver = {
.name = "p61",
.bus = &spi_bus_type,
.owner = THIS_MODULE,
#if DRAGON_P61
.of_match_table = p61_dt_match,
#endif
},
.probe = p61_probe,
.remove = (p61_remove),
};
/**
* \ingroup spi_driver
* \brief Module init interface
*
* \param[in] void
*
* \retval handle
*
*/
#if IS_MODULE(CONFIG_SAMSUNG_NFC)
int p61_dev_init(void)
{
int ret;
debug_level = P61_DEBUG_OFF;
P61_DBG_MSG("Entry : %s\n", __func__);
#ifdef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
ret = platform_driver_register(&p61_platform_driver);
NFC_LOG_INFO("%s: platform_driver_register, ret %d\n", __func__, ret);
#endif
ret = spi_register_driver(&p61_driver);
return ret;
}
EXPORT_SYMBOL(p61_dev_init);
void p61_dev_exit(void)
{
P61_DBG_MSG("Entry : %s\n", __func__);
#ifdef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
platform_driver_unregister(&p61_platform_driver);
#endif
spi_unregister_driver(&p61_driver);
}
EXPORT_SYMBOL(p61_dev_exit);
#else
static int __init p61_dev_init(void)
{
int ret;
debug_level = P61_DEBUG_OFF;
P61_DBG_MSG("Entry : %s\n", __func__);
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
if (nfc_get_lpcharge() == LPM_TRUE)
return 0;
#endif
#ifdef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
ret = platform_driver_register(&p61_platform_driver);
NFC_LOG_INFO("%s: platform_driver_register, ret %d\n", __func__, ret);
#endif
ret = spi_register_driver(&p61_driver);
return ret;
}
module_init(p61_dev_init);
/**
* \ingroup spi_driver
* \brief Module exit interface
*
* \param[in] void
*
* \retval void
*
*/
static void __exit p61_dev_exit(void)
{
P61_DBG_MSG("Entry : %s\n", __func__);
#if IS_ENABLED(CONFIG_SAMSUNG_NFC)
if (nfc_get_lpcharge() == LPM_TRUE)
return;
#endif
#ifdef CONFIG_MAKE_NODE_USING_PLATFORM_DEVICE
platform_driver_unregister(&p61_platform_driver);
#endif
spi_unregister_driver(&p61_driver);
}
module_exit(p61_dev_exit);
MODULE_ALIAS("spi:p61");
MODULE_AUTHOR("BHUPENDRA PAWAR");
MODULE_DESCRIPTION("NXP P61 SPI driver");
MODULE_LICENSE("GPL");
#endif
/** @} */