Files
2025-08-12 22:16:57 +02:00

708 lines
18 KiB
C
Executable File

// SPDX-License-Identifier: GPL-2.0
/*
* DMABUF Rbin heap exporter for Samsung
*
* Copyright (c) 2021 Samsung Electronics Co., Ltd.
*/
#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/dma-heap.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_reserved_mem.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/cpuhotplug.h>
#include <linux/mm_types.h>
#include <linux/types.h>
#include <linux/sec_mm.h>
#include <trace/hooks/mm.h>
#include "rbinregion.h"
#include "deferred-free-helper.h"
#include "qcom_dt_parser.h"
#include "qcom_sg_ops.h"
/* page types we track in the pool */
enum {
POOL_LOWPAGE, /* Clean lowmem pages */
POOL_HIGHPAGE, /* Clean highmem pages */
POOL_TYPE_SIZE,
};
/**
* struct rbin_dmabuf_page_pool - pagepool struct
* @count[]: array of number of pages of that type in the pool
* @items[]: array of list of pages of the specific type
* @lock: lock protecting this struct and especially the count
* item list
* @gfp_mask: gfp_mask to use from alloc
* @order: order of pages in the pool
* @list: list node for list of pools
*
* Allows you to keep a pool of pre allocated pages to use
*/
struct rbin_dmabuf_page_pool {
int count[POOL_TYPE_SIZE];
struct list_head items[POOL_TYPE_SIZE];
spinlock_t lock;
gfp_t gfp_mask;
unsigned int order;
struct list_head list;
};
#define RBINHEAP_PREFIX "[RBIN-HEAP] "
#define perrfn(format, arg...) \
pr_err(RBINHEAP_PREFIX "%s: " format "\n", __func__, ##arg)
#define perrdev(dev, format, arg...) \
dev_err(dev, RBINHEAP_PREFIX format "\n", ##arg)
static struct dma_heap *rbin_cached_dma_heap;
static struct dma_heap *rbin_uncached_dma_heap;
static const unsigned int rbin_orders[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
#define NUM_RBIN_ORDERS ARRAY_SIZE(rbin_orders)
static int order_to_index(unsigned int order)
{
int i;
for (i = 0; i < NUM_RBIN_ORDERS; i++)
if (order == rbin_orders[i])
return i;
BUG();
return -1;
}
struct rbin_heap {
struct task_struct *task;
struct task_struct *task_shrink;
bool task_run;
bool shrink_run;
wait_queue_head_t waitqueue;
unsigned long count;
struct rbin_dmabuf_page_pool *pools[NUM_RBIN_ORDERS];
};
static void rbin_page_pool_add(struct rbin_dmabuf_page_pool *pool, struct page *page)
{
int index;
if (PageHighMem(page))
index = POOL_HIGHPAGE;
else
index = POOL_LOWPAGE;
spin_lock(&pool->lock);
list_add_tail(&page->lru, &pool->items[index]);
pool->count[index]++;
spin_unlock(&pool->lock);
}
static struct page *rbin_page_pool_remove(struct rbin_dmabuf_page_pool *pool, int index)
{
struct page *page;
spin_lock(&pool->lock);
page = list_first_entry_or_null(&pool->items[index], struct page, lru);
if (page) {
pool->count[index]--;
list_del(&page->lru);
}
spin_unlock(&pool->lock);
return page;
}
static struct page *rbin_page_pool_fetch(struct rbin_dmabuf_page_pool *pool)
{
struct page *page = NULL;
page = rbin_page_pool_remove(pool, POOL_HIGHPAGE);
if (!page)
page = rbin_page_pool_remove(pool, POOL_LOWPAGE);
return page;
}
static struct rbin_dmabuf_page_pool *rbin_page_pool_create(gfp_t gfp_mask, unsigned int order)
{
struct rbin_dmabuf_page_pool *pool = kmalloc(sizeof(*pool), GFP_KERNEL);
int i;
if (!pool)
return NULL;
for (i = 0; i < POOL_TYPE_SIZE; i++) {
pool->count[i] = 0;
INIT_LIST_HEAD(&pool->items[i]);
}
pool->gfp_mask = gfp_mask | __GFP_COMP;
pool->order = order;
spin_lock_init(&pool->lock);
return pool;
}
static void rbin_page_pool_free(struct rbin_dmabuf_page_pool *pool, struct page *page)
{
rbin_page_pool_add(pool, page);
}
static struct page *alloc_rbin_page(unsigned long size, unsigned long last_size)
{
struct page *page = ERR_PTR(-ENOMEM);
phys_addr_t paddr = -ENOMEM;
void *addr;
int order;
order = min(get_order(last_size), get_order(size));
for (; order >= 0; order--) {
size = min_t(unsigned long, size, PAGE_SIZE << order);
paddr = dmabuf_rbin_allocate(size);
if (paddr == -ENOMEM)
continue;
if (paddr == -EBUSY)
page = ERR_PTR(-EBUSY);
break;
}
if (!IS_ERR_VALUE(paddr)) {
page = phys_to_page(paddr);
INIT_LIST_HEAD(&page->lru);
addr = page_address(page);
memset(addr, 0, size);
set_page_private(page, size);
}
return page;
}
static inline void do_expand(struct rbin_heap *rbin_heap,
struct page *page, unsigned int nr_pages)
{
unsigned int rem_nr_pages;
unsigned int order;
unsigned int total_nr_pages;
unsigned int free_nr_page;
struct page *free_page;
struct rbin_dmabuf_page_pool *pool;
total_nr_pages = page_private(page) >> PAGE_SHIFT;
rem_nr_pages = total_nr_pages - nr_pages;
free_page = page + total_nr_pages;
while (rem_nr_pages) {
order = ilog2(rem_nr_pages);
free_nr_page = 1 << order;
free_page -= free_nr_page;
set_page_private(free_page, free_nr_page << PAGE_SHIFT);
pool = rbin_heap->pools[order_to_index(order)];
rbin_page_pool_free(pool, free_page);
rem_nr_pages -= free_nr_page;
}
set_page_private(page, nr_pages << PAGE_SHIFT);
}
static struct page *alloc_rbin_page_from_pool(struct rbin_heap *rbin_heap,
unsigned long size)
{
struct page *page = NULL;
unsigned int size_order = get_order(size);
unsigned int nr_pages = size >> PAGE_SHIFT;
int i;
/* try the same or higher order */
for (i = NUM_RBIN_ORDERS - 1; i >= 0; i--) {
if (rbin_orders[i] < size_order)
continue;
page = rbin_page_pool_fetch(rbin_heap->pools[i]);
if (!page)
continue;
if (nr_pages < (1 << rbin_orders[i]))
do_expand(rbin_heap, page, nr_pages);
goto done;
}
/* try lower order */
for (i = 0; i < NUM_RBIN_ORDERS; i++) {
if (rbin_orders[i] >= size_order)
continue;
page = rbin_page_pool_fetch(rbin_heap->pools[i]);
if (!page)
continue;
goto done;
}
done:
if (page)
atomic_sub(page_private(page) >> PAGE_SHIFT, &rbin_pool_pages);
return page;
}
static void rbin_heap_free(struct qcom_sg_buffer *buffer)
{
struct sg_table *table = &buffer->sg_table;
struct scatterlist *sg;
struct page *page;
int i;
for_each_sg(table->sgl, sg, table->nents, i) {
page = sg_page(sg);
dmabuf_rbin_free(page_to_phys(page), page_private(page));
}
atomic_sub(buffer->len >> PAGE_SHIFT, &rbin_alloced_pages);
sg_free_table(table);
kfree(buffer);
}
static struct dma_buf *rbin_heap_allocate(struct dma_heap *heap,
unsigned long len, u32 fd_flags,
u64 heap_flags, bool uncached)
{
struct rbin_heap *rbin_heap = dma_heap_get_drvdata(heap);
struct qcom_sg_buffer *buffer;
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
unsigned long size_remain;
unsigned long last_size;
unsigned long nr_free;
struct dma_buf *dmabuf;
struct sg_table *table;
struct scatterlist *sg;
struct list_head pages;
struct page *page, *tmp_page;
int i = 0;
int ret = -ENOMEM;
size_remain = last_size = PAGE_ALIGN(len);
nr_free = rbin_heap->count - atomic_read(&rbin_alloced_pages);
if (size_remain > nr_free << PAGE_SHIFT)
return ERR_PTR(ret);
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (!buffer)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&buffer->attachments);
mutex_init(&buffer->lock);
buffer->heap = heap;
buffer->len = len;
buffer->uncached = uncached;
buffer->free = rbin_heap_free;
INIT_LIST_HEAD(&pages);
while (size_remain > 0) {
/*
* Avoid trying to allocate memory if the process
* has been killed by SIGKILL
*/
if (fatal_signal_pending(current)) {
perrfn("Fatal signal pending pid #%d", current->pid);
ret = -EINTR;
goto free_buffer;
}
if (atomic_read(&rbin_pool_pages)) {
page = alloc_rbin_page_from_pool(rbin_heap, size_remain);
if (page)
goto got_pg;
}
page = alloc_rbin_page(size_remain, last_size);
if (IS_ERR(page))
goto free_buffer;
else
last_size = page_private(page);
got_pg:
list_add_tail(&page->lru, &pages);
size_remain -= page_private(page);
i++;
}
table = &buffer->sg_table;
if (sg_alloc_table(table, i, GFP_KERNEL)) {
ret = PTR_ERR(buffer);
perrfn("sg_alloc_table failed %d\n", ret);
goto free_buffer;
}
sg = table->sgl;
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
sg_set_page(sg, page, page_private(page), 0);
sg = sg_next(sg);
list_del(&page->lru);
}
/*
* For uncached buffers, we need to initially flush cpu cache, since
* the __GFP_ZERO on the allocation means the zeroing was done by the
* cpu and thus it is likely cached. Map (and implicitly flush) and
* unmap it now so we don't get corruption later on.
*/
if (buffer->uncached) {
dma_map_sgtable(dma_heap_get_dev(heap), table, DMA_BIDIRECTIONAL, 0);
dma_unmap_sgtable(dma_heap_get_dev(heap), table, DMA_BIDIRECTIONAL, 0);
}
buffer->vmperm = mem_buf_vmperm_alloc(table);
if (IS_ERR(buffer->vmperm)) {
ret = PTR_ERR(buffer->vmperm);
perrfn("vmperm error %d\n", ret);
goto free_sg;
}
/* create the dmabuf */
exp_info.exp_name = dma_heap_get_name(heap);
exp_info.size = buffer->len;
exp_info.flags = fd_flags;
exp_info.priv = buffer;
dmabuf = mem_buf_dma_buf_export(&exp_info, &qcom_sg_buf_ops);
if (IS_ERR(dmabuf)) {
ret = PTR_ERR(dmabuf);
goto vmperm_release;
}
atomic_add(len >> PAGE_SHIFT, &rbin_alloced_pages);
return dmabuf;
vmperm_release:
mem_buf_vmperm_release(buffer->vmperm);
free_sg:
sg_free_table(table);
free_buffer:
list_for_each_entry_safe(page, tmp_page, &pages, lru)
dmabuf_rbin_free(page_to_phys(page), page_private(page));
kfree(buffer);
return ERR_PTR(ret);
}
static struct rbin_heap *g_rbin_heap;
void wake_dmabuf_rbin_heap_prereclaim(void)
{
if (g_rbin_heap) {
g_rbin_heap->task_run = 1;
wake_up(&g_rbin_heap->waitqueue);
}
}
EXPORT_SYMBOL_GPL(wake_dmabuf_rbin_heap_prereclaim);
void wake_dmabuf_rbin_heap_shrink(void)
{
if (g_rbin_heap) {
g_rbin_heap->shrink_run = 1;
wake_up(&g_rbin_heap->waitqueue);
}
}
static void dmabuf_rbin_heap_destroy_pools(struct rbin_dmabuf_page_pool **pools)
{
int i;
for (i = 0; i < NUM_RBIN_ORDERS; i++)
kfree(pools[i]);
}
static int dmabuf_rbin_heap_create_pools(struct rbin_dmabuf_page_pool **pools)
{
int i;
for (i = 0; i < NUM_RBIN_ORDERS; i++) {
pools[i] = rbin_page_pool_create(GFP_KERNEL, rbin_orders[i]);
if (!pools[i])
goto err_create_pool;
}
return 0;
err_create_pool:
dmabuf_rbin_heap_destroy_pools(pools);
return -ENOMEM;
}
#define RBIN_CORE_NUM_FIRST 0
#define RBIN_CORE_NUM_LAST 3
static struct cpumask rbin_cpumask;
static void init_rbin_cpumask(void)
{
int i;
cpumask_clear(&rbin_cpumask);
for (i = RBIN_CORE_NUM_FIRST; i <= RBIN_CORE_NUM_LAST; i++)
cpumask_set_cpu(i, &rbin_cpumask);
}
static int rbin_cpu_online(unsigned int cpu)
{
if (cpumask_any_and(cpu_online_mask, &rbin_cpumask) < nr_cpu_ids) {
/* One of our CPUs online: restore mask */
set_cpus_allowed_ptr(g_rbin_heap->task, &rbin_cpumask);
set_cpus_allowed_ptr(g_rbin_heap->task_shrink, &rbin_cpumask);
}
return 0;
}
static int dmabuf_rbin_heap_prereclaim(void *data)
{
struct rbin_heap *rbin_heap = data;
unsigned int order;
unsigned long size = PAGE_SIZE << rbin_orders[0];
unsigned long last_size;
struct rbin_dmabuf_page_pool *pool;
struct page *page;
unsigned long jiffies_bstop;
set_cpus_allowed_ptr(current, &rbin_cpumask);
while (true) {
wait_event_freezable(rbin_heap->waitqueue, rbin_heap->task_run);
jiffies_bstop = jiffies + (HZ / 10);
last_size = size;
while (true) {
page = alloc_rbin_page(size, last_size);
if (PTR_ERR(page) == -ENOMEM)
break;
if (PTR_ERR(page) == -EBUSY) {
if (time_is_after_jiffies(jiffies_bstop))
continue;
else
break;
}
last_size = page_private(page);
order = get_order(page_private(page));
pool = rbin_heap->pools[order_to_index(order)];
rbin_page_pool_free(pool, page);
atomic_add(1 << order, &rbin_pool_pages);
}
rbin_heap->task_run = 0;
}
return 0;
}
static int dmabuf_rbin_heap_shrink(void *data)
{
struct rbin_heap *rbin_heap = data;
unsigned long size = PAGE_SIZE << rbin_orders[0];
struct page *page;
set_cpus_allowed_ptr(current, &rbin_cpumask);
while (true) {
wait_event_freezable(rbin_heap->waitqueue, rbin_heap->shrink_run);
while (true) {
page = alloc_rbin_page_from_pool(rbin_heap, size);
if (!page)
break;
dmabuf_rbin_free(page_to_phys(page), page_private(page));
}
rbin_heap->shrink_run = 0;
}
return 0;
}
/* Dummy function to be used until we can call coerce_mask_and_coherent */
static struct dma_buf *rbin_heap_allocate_not_initialized(struct dma_heap *heap,
unsigned long len,
u32 fd_flags,
u64 heap_flags)
{
return ERR_PTR(-EBUSY);
}
static struct dma_buf *rbin_cached_heap_allocate(struct dma_heap *heap,
unsigned long len,
u32 fd_flags,
u64 heap_flags)
{
return rbin_heap_allocate(heap, len, fd_flags, heap_flags, false);
}
static struct dma_heap_ops rbin_cached_heap_ops = {
.allocate = rbin_heap_allocate_not_initialized,
};
static struct dma_buf *rbin_uncached_heap_allocate(struct dma_heap *heap,
unsigned long len,
u32 fd_flags,
u64 heap_flags)
{
return rbin_heap_allocate(heap, len, fd_flags, heap_flags, true);
}
static struct dma_heap_ops rbin_uncached_heap_ops = {
/* After rbin_heap_create is complete, we will swap this */
.allocate = rbin_heap_allocate_not_initialized,
};
#define PAGES_TO_KB(x) ((x) << (PAGE_SHIFT - 10))
static void rbin_heap_show_mem(void *data, unsigned int filter, nodemask_t *nodemask)
{
struct dma_heap *heap = (struct dma_heap *)data;
struct rbin_heap *rbin_heap = dma_heap_get_drvdata(heap);
pr_info("rbintotal: %lu kB rbinpool: %u kB rbinfree: %u kB rbincache: %u kB\n",
PAGES_TO_KB(rbin_heap->count),
PAGES_TO_KB(atomic_read(&rbin_pool_pages)),
PAGES_TO_KB(atomic_read(&rbin_free_pages)),
PAGES_TO_KB(atomic_read(&rbin_cached_pages)));
}
static void show_rbin_meminfo(void *data, struct seq_file *m)
{
struct dma_heap *heap = (struct dma_heap *)data;
struct rbin_heap *rbin_heap = dma_heap_get_drvdata(heap);
int alloced_pages = atomic_read(&rbin_alloced_pages);
int pool_pages = atomic_read(&rbin_pool_pages);
int free_pages = atomic_read(&rbin_free_pages);
int cache_pages = atomic_read(&rbin_cached_pages);
show_val_meminfo(m, "RbinTotal", PAGES_TO_KB(rbin_heap->count));
show_val_meminfo(m, "RbinAlloced", (u64)PAGES_TO_KB(alloced_pages));
show_val_meminfo(m, "RbinFree", (u64)PAGES_TO_KB(pool_pages + free_pages));
show_val_meminfo(m, "RbinCached", (u64)PAGES_TO_KB(cache_pages));
}
static void rbin_cache_adjust(void *data, unsigned long *cached)
{
*cached += (unsigned long)atomic_read(&rbin_cached_pages);
}
static void rbin_available_adjust(void *data, unsigned long *available)
{
*available += (unsigned long)atomic_read(&rbin_cached_pages);
*available += (unsigned long)atomic_read(&rbin_free_pages);
*available += (unsigned long)atomic_read(&rbin_pool_pages);
}
static void rbin_meminfo_adjust(void *data, unsigned long *totalram,
unsigned long *freeram)
{
struct dma_heap *heap = (struct dma_heap *)data;
struct rbin_heap *rbin_heap;
if (!heap)
return;
rbin_heap = dma_heap_get_drvdata(heap);
if (!rbin_heap)
return;
*totalram += rbin_heap->count;
*freeram += (unsigned long)atomic_read(&rbin_free_pages);
*freeram += (unsigned long)atomic_read(&rbin_pool_pages);
}
int add_rbin_heap(struct platform_heap *heap_data)
{
struct dma_heap_export_info exp_info;
struct rbin_heap *rbin_heap;
struct kobject *kobj;
int ret = 0;
if (!heap_data->base) {
perrdev(heap_data->dev, "memory-region has no base");
ret = -ENODEV;
goto out;
}
if (!heap_data->size) {
perrdev(heap_data->dev, "memory-region has no size");
ret = -ENOMEM;
goto out;
}
rbin_heap = kzalloc(sizeof(struct rbin_heap), GFP_KERNEL);
if (!rbin_heap) {
perrdev(heap_data->dev, "failed to alloc rbin_heap");
ret = -ENOMEM;
goto out;
}
kobj = kobject_create_and_add("rbin", kernel_kobj);
if (!kobj) {
perrdev(heap_data->dev, "failed to create kobj");
ret = -ENOMEM;
goto free_rbin_heap;
}
if (dmabuf_rbin_heap_create_pools(rbin_heap->pools)) {
perrdev(heap_data->dev, "failed to create dma-buf page pool");
ret = -ENOMEM;
goto free_kobj;
}
ret = init_rbinregion(kobj, heap_data->base, heap_data->size);
if (ret) {
perrdev(heap_data->dev, "failed to init rbinregion");
goto destroy_pools;
}
init_rbin_cpumask();
init_waitqueue_head(&rbin_heap->waitqueue);
rbin_heap->count = heap_data->size >> PAGE_SHIFT;
rbin_heap->task = kthread_run(dmabuf_rbin_heap_prereclaim, rbin_heap, "rbin");
rbin_heap->task_shrink = kthread_run(dmabuf_rbin_heap_shrink, rbin_heap, "rbin_shrink");
g_rbin_heap = rbin_heap;
pr_info("%s created %s\n", __func__, heap_data->name);
exp_info.name = "qcom,camera";
exp_info.ops = &rbin_cached_heap_ops;
exp_info.priv = rbin_heap;
rbin_cached_dma_heap = dma_heap_add(&exp_info);
if (IS_ERR(rbin_cached_dma_heap)) {
perrdev(heap_data->dev, "failed to dma_heap_add camera");
ret = PTR_ERR(rbin_cached_dma_heap);
goto destroy_pools;
}
exp_info.name = "qcom,camera-uncached";
exp_info.ops = &rbin_uncached_heap_ops;
exp_info.priv = rbin_heap;
rbin_uncached_dma_heap = dma_heap_add(&exp_info);
if (IS_ERR(rbin_uncached_dma_heap)) {
perrdev(heap_data->dev, "failed to dma_heap_add camera-uncached");
ret = PTR_ERR(rbin_uncached_dma_heap);
goto destroy_pools;
}
dma_coerce_mask_and_coherent(dma_heap_get_dev(rbin_uncached_dma_heap), DMA_BIT_MASK(64));
mb(); /* make sure we only set allocate after dma_mask is set */
rbin_cached_heap_ops.allocate = rbin_cached_heap_allocate;
rbin_uncached_heap_ops.allocate = rbin_uncached_heap_allocate;
register_trace_android_vh_show_mem(rbin_heap_show_mem, (void *)rbin_cached_dma_heap);
register_trace_android_vh_meminfo_proc_show(show_rbin_meminfo, (void *)rbin_cached_dma_heap);
register_trace_android_vh_meminfo_cache_adjust(rbin_cache_adjust, NULL);
register_trace_android_vh_si_mem_available_adjust(rbin_available_adjust, NULL);
register_trace_android_vh_si_meminfo_adjust(rbin_meminfo_adjust, (void *)rbin_cached_dma_heap);
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
"ion/rbin:online", rbin_cpu_online,
NULL);
if (ret < 0)
pr_err("rbin: failed to register 'online' hotplug state\n");
pr_info("%s done\n", __func__);
return 0;
destroy_pools:
dmabuf_rbin_heap_destroy_pools(rbin_heap->pools);
free_kobj:
kobject_put(kobj);
free_rbin_heap:
kfree(rbin_heap);
out:
return ret;
}