Files
2025-08-12 22:16:57 +02:00

905 lines
22 KiB
C
Executable File

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
* Copyright (C) 2009 Intel Corporation
* Copyright (c) 2012-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/cpu.h>
#include <linux/cpuidle.h>
#include <linux/cpu_pm.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/pm_qos.h>
#include <linux/sched/idle.h>
#if IS_ENABLED(CONFIG_SCHED_WALT)
#include <linux/sched/walt.h>
#endif
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/suspend.h>
#include <linux/tick.h>
#include <linux/time64.h>
#include <trace/events/ipi.h>
#include <trace/events/power.h>
#include <trace/hooks/cpuidle.h>
#include "qcom-lpm.h"
#define CREATE_TRACE_POINTS
#include "trace-qcom-lpm.h"
#define LPM_PRED_RESET 0
#define LPM_PRED_RESIDENCY_PATTERN 1
#define LPM_PRED_PREMATURE_EXITS 2
#define LPM_PRED_IPI_PATTERN 3
#define LPM_SELECT_STATE_DISABLED 0
#define LPM_SELECT_STATE_QOS_UNMET 1
#define LPM_SELECT_STATE_RESIDENCY_UNMET 2
#define LPM_SELECT_STATE_PRED 3
#define LPM_SELECT_STATE_IPI_PENDING 4
#define LPM_SELECT_STATE_SCHED_BIAS 5
#define LPM_SELECT_STATE_MAX 7
#define UPDATE_REASON(i, u) (BIT(u) << (MAX_LPM_CPUS * i))
bool prediction_disabled;
bool sleep_disabled = true;
static bool suspend_in_progress;
static bool traces_registered;
static struct cluster_governor *cluster_gov_ops;
DEFINE_PER_CPU(struct lpm_cpu, lpm_cpu_data);
static inline bool check_cpu_isactive(int cpu)
{
return cpu_active(cpu);
}
static bool lpm_disallowed(s64 sleep_ns, int cpu)
{
#if IS_ENABLED(CONFIG_SCHED_WALT)
struct lpm_cpu *cpu_gov = per_cpu_ptr(&lpm_cpu_data, cpu);
uint64_t bias_time = 0;
#endif
if (suspend_in_progress)
return true;
if (!check_cpu_isactive(cpu))
return false;
if ((sleep_disabled || sleep_ns < 0))
return true;
#if IS_ENABLED(CONFIG_SCHED_WALT)
if (!sched_lpm_disallowed_time(cpu, &bias_time)) {
cpu_gov->last_idx = 0;
cpu_gov->bias = bias_time;
return true;
}
#endif
return false;
}
/**
* histtimer_fn() - Will be executed when per cpu prediction timer expires
* @h: cpu prediction timer
*/
static enum hrtimer_restart histtimer_fn(struct hrtimer *h)
{
struct lpm_cpu *cpu_gov = this_cpu_ptr(&lpm_cpu_data);
cpu_gov->history_invalid = 1;
return HRTIMER_NORESTART;
}
/**
* histtimer_start() - Program the hrtimer with given timer value
* @time_ns: Value to be program
*/
static void histtimer_start(uint32_t time_ns)
{
ktime_t hist_ktime = ns_to_ktime(time_ns * NSEC_PER_USEC);
struct lpm_cpu *cpu_gov = this_cpu_ptr(&lpm_cpu_data);
struct hrtimer *cpu_histtimer = &cpu_gov->histtimer;
cpu_histtimer->function = histtimer_fn;
hrtimer_start(cpu_histtimer, hist_ktime, HRTIMER_MODE_REL_PINNED);
}
/**
* histtimer_cancel() - Cancel the histtimer after cpu wakes up from lpm
*/
static void histtimer_cancel(void)
{
struct lpm_cpu *cpu_gov = this_cpu_ptr(&lpm_cpu_data);
struct hrtimer *cpu_histtimer = &cpu_gov->histtimer;
ktime_t time_rem;
if (!hrtimer_active(cpu_histtimer))
return;
time_rem = hrtimer_get_remaining(cpu_histtimer);
if (ktime_to_us(time_rem) <= 0)
return;
hrtimer_try_to_cancel(cpu_histtimer);
}
static void biastimer_cancel(void)
{
struct lpm_cpu *cpu_gov = this_cpu_ptr(&lpm_cpu_data);
struct hrtimer *cpu_biastimer = &cpu_gov->biastimer;
ktime_t time_rem;
if (!cpu_gov->bias)
return;
cpu_gov->bias = 0;
time_rem = hrtimer_get_remaining(cpu_biastimer);
if (ktime_to_us(time_rem) <= 0)
return;
hrtimer_try_to_cancel(cpu_biastimer);
}
static enum hrtimer_restart biastimer_fn(struct hrtimer *h)
{
return HRTIMER_NORESTART;
}
static void biastimer_start(uint32_t time_ns)
{
ktime_t bias_ktime = ns_to_ktime(time_ns);
struct lpm_cpu *cpu_gov = this_cpu_ptr(&lpm_cpu_data);
struct hrtimer *cpu_biastimer = &cpu_gov->biastimer;
cpu_biastimer->function = biastimer_fn;
hrtimer_start(cpu_biastimer, bias_ktime, HRTIMER_MODE_REL_PINNED);
}
/**
* find_deviation() - Try to detect repeat patterns by keeping track of past
* samples and check if the standard deviation of that set
* of previous sample is below a threshold. If it is below
* threshold then use average of these past samples as
* predicted value.
* @cpu_gov: targeted cpu's lpm data structure
* @duration_ns: cpu's scheduler sleep length
*/
static uint64_t find_deviation(struct lpm_cpu *cpu_gov, int *samples_history,
u64 duration_ns)
{
uint64_t max, avg, stddev;
uint64_t thresh = LLONG_MAX;
struct cpuidle_driver *drv = cpu_gov->drv;
int divisor, i, last_level = drv->state_count - 1;
struct cpuidle_state *max_state = &drv->states[last_level];
do {
max = avg = divisor = stddev = 0;
for (i = 0; i < MAXSAMPLES; i++) {
int64_t value = samples_history[i];
if (value <= thresh) {
avg += value;
divisor++;
if (value > max)
max = value;
}
}
do_div(avg, divisor);
for (i = 0; i < MAXSAMPLES; i++) {
int64_t value = samples_history[i];
if (value <= thresh) {
int64_t diff = value - avg;
stddev += diff * diff;
}
}
do_div(stddev, divisor);
stddev = int_sqrt(stddev);
/*
* If the deviation is less, return the average, else
* ignore one maximum sample and retry
*/
if (((avg > stddev * 6) && (divisor >= (MAXSAMPLES - 1)))
|| stddev <= PRED_REF_STDDEV) {
do_div(duration_ns, NSEC_PER_USEC);
if (avg >= duration_ns ||
avg > max_state->target_residency)
return 0;
cpu_gov->next_pred_time = ktime_to_us(cpu_gov->now) + avg;
return avg;
}
thresh = max - 1;
} while (divisor > (MAXSAMPLES - 1));
return 0;
}
/**
* cpu_predict() - Predict the cpus next wakeup.
* @cpu_gov: targeted cpu's lpm data structure
* @duration_ns: cpu's scheduler sleep length
*/
static void cpu_predict(struct lpm_cpu *cpu_gov, u64 duration_ns)
{
int i, j;
struct cpuidle_driver *drv = cpu_gov->drv;
struct cpuidle_state *min_state = &drv->states[0];
struct history_lpm *lpm_history = &cpu_gov->lpm_history;
struct history_ipi *ipi_history = &cpu_gov->ipi_history;
if (prediction_disabled)
return;
/*
* Samples are marked invalid when woken-up due to timer,
* so do not predict.
*/
if (cpu_gov->history_invalid) {
cpu_gov->history_invalid = false;
cpu_gov->htmr_wkup = true;
cpu_gov->next_pred_time = 0;
return;
}
/*
* If the duration_ns itself is not sufficient for deeper
* low power modes than clock gating do not predict
*/
if (min_state->target_residency_ns > duration_ns)
return;
/* Predict only when all the samples are collected */
if (lpm_history->nsamp < MAXSAMPLES) {
cpu_gov->next_pred_time = 0;
return;
}
/*
* Check if the samples are not much deviated, if so use the
* average of those as predicted sleep time. Else if any
* specific mode has more premature exits return the index of
* that mode.
*/
cpu_gov->predicted = find_deviation(cpu_gov, lpm_history->resi, duration_ns);
if (cpu_gov->predicted) {
cpu_gov->pred_type = LPM_PRED_RESIDENCY_PATTERN;
return;
}
/*
* Find the number of premature exits for each of the mode,
* excluding clockgating mode, and they are more than fifty
* percent restrict that and deeper modes.
*/
for (j = 1; j < drv->state_count; j++) {
struct cpuidle_state *s = &drv->states[j];
uint32_t min_residency = s->target_residency;
uint32_t count = 0;
uint64_t avg_residency = 0;
for (i = 0; i < MAXSAMPLES; i++) {
if ((lpm_history->mode[i] == j) &&
(lpm_history->resi[i] < min_residency)) {
count++;
avg_residency += lpm_history->resi[i];
}
}
if (count >= PRED_PREMATURE_CNT) {
do_div(avg_residency, count);
cpu_gov->predicted = avg_residency;
cpu_gov->next_pred_time = ktime_to_us(cpu_gov->now)
+ cpu_gov->predicted;
cpu_gov->pred_type = LPM_PRED_PREMATURE_EXITS;
break;
}
}
if (cpu_gov->predicted)
return;
cpu_gov->predicted = find_deviation(cpu_gov, ipi_history->interval,
duration_ns);
if (cpu_gov->predicted)
cpu_gov->pred_type = LPM_PRED_IPI_PATTERN;
}
/**
* clear_cpu_predict_history() - Clears the stored previous samples data.
* It will be called when APSS going to deep sleep.
*/
void clear_cpu_predict_history(void)
{
struct lpm_cpu *cpu_gov;
struct history_lpm *lpm_history;
int i, cpu;
if (prediction_disabled)
return;
for_each_possible_cpu(cpu) {
cpu_gov = per_cpu_ptr(&lpm_cpu_data, cpu);
lpm_history = &cpu_gov->lpm_history;
for (i = 0; i < MAXSAMPLES; i++) {
lpm_history->resi[i] = 0;
lpm_history->mode[i] = -1;
lpm_history->samples_idx = 0;
lpm_history->nsamp = 0;
cpu_gov->next_pred_time = 0;
cpu_gov->pred_type = LPM_PRED_RESET;
}
}
}
/**
* update_cpu_history() - Update the samples history data every time when
* cpu comes from sleep.
* @cpu_gov: targeted cpu's lpm data structure
*/
static void update_cpu_history(struct lpm_cpu *cpu_gov)
{
bool tmr = false;
int idx = cpu_gov->last_idx;
struct history_lpm *lpm_history = &cpu_gov->lpm_history;
u64 measured_us = ktime_to_us(cpu_gov->dev->last_residency_ns);
struct cpuidle_state *target;
if (sleep_disabled || prediction_disabled || idx < 0 ||
idx > cpu_gov->drv->state_count - 1)
return;
target = &cpu_gov->drv->states[idx];
if (measured_us > target->exit_latency)
measured_us -= target->exit_latency;
if (cpu_gov->htmr_wkup) {
if (!lpm_history->samples_idx)
lpm_history->samples_idx = MAXSAMPLES - 1;
else
lpm_history->samples_idx--;
lpm_history->resi[lpm_history->samples_idx] += measured_us;
cpu_gov->htmr_wkup = false;
tmr = true;
} else
lpm_history->resi[lpm_history->samples_idx] = measured_us;
lpm_history->mode[lpm_history->samples_idx] = idx;
cpu_gov->pred_type = LPM_PRED_RESET;
trace_gov_pred_hist(idx, lpm_history->resi[lpm_history->samples_idx],
tmr);
if (lpm_history->nsamp < MAXSAMPLES)
lpm_history->nsamp++;
lpm_history->samples_idx++;
if (lpm_history->samples_idx >= MAXSAMPLES)
lpm_history->samples_idx = 0;
}
void update_ipi_history(int cpu)
{
struct lpm_cpu *cpu_gov = per_cpu_ptr(&lpm_cpu_data, cpu);
struct history_ipi *history = &cpu_gov->ipi_history;
ktime_t now = ktime_get();
history->interval[history->current_ptr] =
ktime_to_us(ktime_sub(now,
history->cpu_idle_resched_ts));
(history->current_ptr)++;
if (history->current_ptr >= MAXSAMPLES)
history->current_ptr = 0;
history->cpu_idle_resched_ts = now;
}
/**
* lpm_cpu_qos_notify() - It will be called when any new request came on PM QoS.
* It wakes up the cpu if it is in idle sleep to honour
* the new PM QoS request.
* @nfb: notifier block of the CPU
* @val: notification value
* @ptr: pointer to private data structure
*/
static int lpm_cpu_qos_notify(struct notifier_block *nfb,
unsigned long val, void *ptr)
{
struct lpm_cpu *cpu_gov = container_of(nfb, struct lpm_cpu, nb);
int cpu = cpu_gov->cpu;
if (!cpu_gov->enable)
return NOTIFY_OK;
preempt_disable();
if (cpu != smp_processor_id() && cpu_online(cpu) &&
check_cpu_isactive(cpu))
wake_up_if_idle(cpu);
preempt_enable();
return NOTIFY_OK;
}
static int lpm_offline_cpu(unsigned int cpu)
{
struct lpm_cpu *cpu_gov = per_cpu_ptr(&lpm_cpu_data, cpu);
struct device *dev = get_cpu_device(cpu);
if (!dev || !cpu_gov)
return 0;
dev_pm_qos_remove_notifier(dev, &cpu_gov->nb,
DEV_PM_QOS_RESUME_LATENCY);
return 0;
}
static int lpm_online_cpu(unsigned int cpu)
{
struct lpm_cpu *cpu_gov = per_cpu_ptr(&lpm_cpu_data, cpu);
struct device *dev = get_cpu_device(cpu);
if (!dev || !cpu_gov)
return 0;
cpu_gov->nb.notifier_call = lpm_cpu_qos_notify;
dev_pm_qos_add_notifier(dev, &cpu_gov->nb,
DEV_PM_QOS_RESUME_LATENCY);
return 0;
}
static void ipi_raise(void *ignore, const struct cpumask *mask, const char *unused)
{
int cpu;
struct lpm_cpu *cpu_gov;
unsigned long flags;
if (suspend_in_progress)
return;
for_each_cpu(cpu, mask) {
cpu_gov = &(per_cpu(lpm_cpu_data, cpu));
if (!cpu_gov->enable)
return;
spin_lock_irqsave(&cpu_gov->lock, flags);
cpu_gov->ipi_pending = true;
spin_unlock_irqrestore(&cpu_gov->lock, flags);
update_ipi_history(cpu);
}
}
static void ipi_entry(void *ignore, const char *unused)
{
int cpu;
struct lpm_cpu *cpu_gov;
unsigned long flags;
if (suspend_in_progress)
return;
cpu = raw_smp_processor_id();
cpu_gov = &(per_cpu(lpm_cpu_data, cpu));
if (!cpu_gov->enable)
return;
spin_lock_irqsave(&cpu_gov->lock, flags);
cpu_gov->ipi_pending = false;
spin_unlock_irqrestore(&cpu_gov->lock, flags);
}
/**
* get_cpus_qos() - Returns the aggrigated PM QoS request.
* @mask: cpumask of the cpus
*/
s64 get_cpus_qos(const struct cpumask *mask)
{
int cpu;
s64 n, latency = PM_QOS_CPU_LATENCY_DEFAULT_VALUE * NSEC_PER_USEC;
for_each_cpu(cpu, mask) {
if (!check_cpu_isactive(cpu))
continue;
n = cpuidle_governor_latency_req(cpu);
if (n < latency)
latency = n;
}
return latency;
}
/**
* start_prediction_timer() - Programs the prediction hrtimer and make the timer
* to run. It wakes up the cpus from shallower state in
* misprediction case and saves the power by not letting
* the cpu remains in sollower state.
* @cpu_gov: cpu's lpm data structure
* @duration_us: cpu's scheduled sleep length
*/
static int start_prediction_timer(struct lpm_cpu *cpu_gov, int duration_us)
{
struct cpuidle_state *s;
uint32_t htime = 0, max_residency;
uint32_t last_level = cpu_gov->drv->state_count - 1;
if (!cpu_gov->predicted || cpu_gov->last_idx >= last_level)
return 0;
if (cpu_gov->next_wakeup > cpu_gov->next_pred_time)
cpu_gov->next_wakeup = cpu_gov->next_pred_time;
s = &cpu_gov->drv->states[0];
max_residency = s[cpu_gov->last_idx + 1].target_residency - 1;
htime = cpu_gov->predicted + PRED_TIMER_ADD;
if (htime > max_residency)
htime = max_residency;
if ((duration_us > htime) && ((duration_us - htime) > max_residency))
histtimer_start(htime);
return htime;
}
void register_cluster_governor_ops(struct cluster_governor *ops)
{
if (!ops)
return;
cluster_gov_ops = ops;
}
/**
* lpm_select() - Find the best idle state for the cpu device
* @dev: Target cpu
* @state: Entered state
* @stop_tick: Is the tick device stopped
*
* Return: Best cpu LPM mode to enter
*/
static int lpm_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
bool *stop_tick)
{
struct lpm_cpu *cpu_gov = this_cpu_ptr(&lpm_cpu_data);
s64 latency_req = get_cpus_qos(cpumask_of(dev->cpu));
ktime_t delta_tick;
u64 reason = 0;
uint64_t duration_ns, htime = 0;
int i = 0;
if (!cpu_gov)
return 0;
do_div(latency_req, NSEC_PER_USEC);
cpu_gov->predicted = 0;
cpu_gov->predict_started = false;
cpu_gov->now = ktime_get();
duration_ns = tick_nohz_get_sleep_length(&delta_tick);
update_cpu_history(cpu_gov);
if (lpm_disallowed(duration_ns, dev->cpu))
goto done;
for (i = drv->state_count - 1; i > 0; i--) {
struct cpuidle_state *s = &drv->states[i];
if (dev->states_usage[i].disable) {
reason |= UPDATE_REASON(i, LPM_SELECT_STATE_DISABLED);
continue;
}
if (latency_req < s->exit_latency) {
reason |= UPDATE_REASON(i, LPM_SELECT_STATE_QOS_UNMET);
continue;
}
if (s->target_residency_ns > duration_ns) {
reason |= UPDATE_REASON(i,
LPM_SELECT_STATE_RESIDENCY_UNMET);
continue;
}
if (check_cpu_isactive(dev->cpu) && !cpu_gov->predict_started) {
cpu_predict(cpu_gov, duration_ns);
cpu_gov->predict_started = true;
}
if (cpu_gov->predicted)
if (s->target_residency > cpu_gov->predicted) {
reason |= UPDATE_REASON(i,
LPM_SELECT_STATE_PRED);
continue;
}
break;
}
do_div(duration_ns, NSEC_PER_USEC);
cpu_gov->last_idx = i;
cpu_gov->next_wakeup = ktime_add_us(cpu_gov->now, duration_ns);
htime = start_prediction_timer(cpu_gov, duration_ns);
/* update this cpu next_wakeup into its parent power domain device */
if (cpu_gov->last_idx == drv->state_count - 1) {
if (cluster_gov_ops && cluster_gov_ops->select)
cluster_gov_ops->select(cpu_gov);
}
done:
if ((!cpu_gov->last_idx) && cpu_gov->bias) {
biastimer_start(cpu_gov->bias);
reason |= UPDATE_REASON(i, LPM_SELECT_STATE_SCHED_BIAS);
}
trace_lpm_gov_select(i, latency_req, duration_ns, reason);
trace_gov_pred_select(cpu_gov->pred_type, cpu_gov->predicted, htime);
return i;
}
/**
* lpm_reflect() - Update the state entered by the cpu device
* @dev: Target CPU
* @state: Entered state
*/
static void lpm_reflect(struct cpuidle_device *dev, int state)
{
struct lpm_cpu *cpu_gov = this_cpu_ptr(&lpm_cpu_data);
if (state && cluster_gov_ops && cluster_gov_ops->reflect)
cluster_gov_ops->reflect(cpu_gov);
}
/**
* lpm_idle_enter() - Notification with cpuidle state during idle entry
* @unused: unused
* @state: selected state by governor's .select
* @dev: cpuidle_device
*/
static void lpm_idle_enter(void *unused, int *state, struct cpuidle_device *dev)
{
struct lpm_cpu *cpu_gov = this_cpu_ptr(&lpm_cpu_data);
u64 reason = 0;
unsigned long flags;
if (*state == 0)
return;
if (!cpu_gov->enable)
return;
/* Restrict to WFI state if there is an IPI pending on current CPU */
spin_lock_irqsave(&cpu_gov->lock, flags);
if (cpu_gov->ipi_pending) {
reason = UPDATE_REASON(*state, LPM_SELECT_STATE_IPI_PENDING);
*state = 0;
trace_lpm_gov_select(*state, 0xdeaffeed, 0xdeaffeed, reason);
}
spin_unlock_irqrestore(&cpu_gov->lock, flags);
}
/**
* lpm_idle_exit() - Notification with cpuidle state during idle exit
* @unused: unused
* @state: actual entered state by cpuidle
* @dev: cpuidle_device
*/
static void lpm_idle_exit(void *unused, int state, struct cpuidle_device *dev)
{
struct lpm_cpu *cpu_gov = per_cpu_ptr(&lpm_cpu_data, dev->cpu);
if (cpu_gov->enable) {
histtimer_cancel();
biastimer_cancel();
}
}
static int suspend_lpm_notify(struct notifier_block *nb,
unsigned long mode, void *_unused)
{
int cpu;
switch (mode) {
case PM_SUSPEND_PREPARE:
suspend_in_progress = true;
break;
case PM_POST_SUSPEND:
suspend_in_progress = false;
break;
default:
break;
}
for_each_online_cpu(cpu)
wake_up_if_idle(cpu);
return 0;
}
/**
* lpm_enable_device() - Initialize the governor's data for the CPU
* @drv: cpuidle driver
* @dev: Target CPU
*/
static int lpm_enable_device(struct cpuidle_driver *drv,
struct cpuidle_device *dev)
{
struct lpm_cpu *cpu_gov = per_cpu_ptr(&lpm_cpu_data, dev->cpu);
struct hrtimer *cpu_histtimer = &cpu_gov->histtimer;
struct hrtimer *cpu_biastimer = &cpu_gov->biastimer;
int ret;
spin_lock_init(&cpu_gov->lock);
hrtimer_init(cpu_histtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrtimer_init(cpu_biastimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
if (!traces_registered) {
ret = register_trace_ipi_raise(ipi_raise, NULL);
if (ret)
return ret;
ret = register_trace_ipi_entry(ipi_entry, NULL);
if (ret) {
unregister_trace_ipi_raise(ipi_raise, NULL);
return ret;
}
ret = register_trace_prio_android_vh_cpu_idle_enter(
lpm_idle_enter, NULL, INT_MIN);
if (ret) {
unregister_trace_ipi_raise(ipi_raise, NULL);
unregister_trace_ipi_entry(ipi_entry, NULL);
return ret;
}
ret = register_trace_prio_android_vh_cpu_idle_exit(
lpm_idle_exit, NULL, INT_MIN);
if (ret) {
unregister_trace_ipi_raise(ipi_raise, NULL);
unregister_trace_ipi_entry(ipi_entry, NULL);
unregister_trace_android_vh_cpu_idle_enter(
lpm_idle_enter, NULL);
return ret;
}
if (cluster_gov_ops && cluster_gov_ops->enable)
cluster_gov_ops->enable();
traces_registered = true;
}
cpu_gov->cpu = dev->cpu;
cpu_gov->enable = true;
cpu_gov->drv = drv;
cpu_gov->dev = dev;
cpu_gov->last_idx = -1;
return 0;
}
/**
* lpm_disable_device() - Clean up the governor's data for the CPU
* @drv: cpuidle driver
* @dev: Target CPU
*/
static void lpm_disable_device(struct cpuidle_driver *drv,
struct cpuidle_device *dev)
{
struct lpm_cpu *cpu_gov = per_cpu_ptr(&lpm_cpu_data, dev->cpu);
int cpu;
cpu_gov->enable = false;
cpu_gov->last_idx = -1;
for_each_possible_cpu(cpu) {
struct lpm_cpu *cpu_gov = per_cpu_ptr(&lpm_cpu_data, cpu);
if (cpu_gov->enable)
return;
}
if (traces_registered) {
unregister_trace_ipi_raise(ipi_raise, NULL);
unregister_trace_ipi_entry(ipi_entry, NULL);
unregister_trace_android_vh_cpu_idle_enter(
lpm_idle_enter, NULL);
unregister_trace_android_vh_cpu_idle_exit(
lpm_idle_exit, NULL);
if (cluster_gov_ops && cluster_gov_ops->disable)
cluster_gov_ops->disable();
traces_registered = false;
}
}
static void qcom_lpm_suspend_trace(void *unused, const char *action,
int event, bool start)
{
int cpu;
if (start && !strcmp("dpm_suspend_late", action)) {
suspend_in_progress = true;
for_each_online_cpu(cpu)
wake_up_if_idle(cpu);
return;
}
if (!start && !strcmp("dpm_resume_early", action)) {
suspend_in_progress = false;
for_each_online_cpu(cpu)
wake_up_if_idle(cpu);
}
}
static struct cpuidle_governor lpm_governor = {
.name = "qcom-cpu-lpm",
.rating = 50,
.enable = lpm_enable_device,
.disable = lpm_disable_device,
.select = lpm_select,
.reflect = lpm_reflect,
};
static struct notifier_block suspend_lpm_nb = {
.notifier_call = suspend_lpm_notify,
};
static int __init qcom_lpm_governor_init(void)
{
int ret;
ret = create_global_sysfs_nodes();
if (ret)
goto sysfs_fail;
ret = qcom_cluster_lpm_governor_init();
if (ret)
goto cluster_init_fail;
ret = cpuidle_register_governor(&lpm_governor);
if (ret)
goto cpuidle_reg_fail;
ret = register_trace_suspend_resume(qcom_lpm_suspend_trace, NULL);
if (ret)
goto cpuidle_reg_fail;
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "qcom-cpu-lpm",
lpm_online_cpu, lpm_offline_cpu);
if (ret < 0)
goto cpuhp_setup_fail;
register_pm_notifier(&suspend_lpm_nb);
return 0;
cpuhp_setup_fail:
unregister_trace_suspend_resume(qcom_lpm_suspend_trace, NULL);
cpuidle_reg_fail:
qcom_cluster_lpm_governor_deinit();
cluster_init_fail:
remove_global_sysfs_nodes();
sysfs_fail:
return ret;
}
module_init(qcom_lpm_governor_init);
MODULE_DESCRIPTION("Qualcomm Technologies, Inc. cpuidle LPM governor");
MODULE_LICENSE("GPL");