769 lines
19 KiB
C
Executable File
769 lines
19 KiB
C
Executable File
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2015, 2017-2018, 2022, The Linux Foundation. All rights reserved.
|
|
* Copyright (c) 2024, Qualcomm Innovation Center, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/export.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/pm_domain.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/reset-controller.h>
|
|
#include <linux/slab.h>
|
|
#include "gdsc.h"
|
|
|
|
#define PWR_ON_MASK BIT(31)
|
|
#define EN_REST_WAIT_MASK GENMASK_ULL(23, 20)
|
|
#define EN_FEW_WAIT_MASK GENMASK_ULL(19, 16)
|
|
#define CLK_DIS_WAIT_MASK GENMASK_ULL(15, 12)
|
|
#define SW_OVERRIDE_MASK BIT(2)
|
|
#define HW_CONTROL_MASK BIT(1)
|
|
#define SW_COLLAPSE_MASK BIT(0)
|
|
#define GMEM_CLAMP_IO_MASK BIT(0)
|
|
#define GMEM_RESET_MASK BIT(4)
|
|
|
|
/* CFG_GDSCR */
|
|
#define GDSC_POWER_UP_COMPLETE BIT(16)
|
|
#define GDSC_POWER_DOWN_COMPLETE BIT(15)
|
|
#define GDSC_RETAIN_FF_ENABLE BIT(11)
|
|
#define CFG_GDSCR_OFFSET 0x4
|
|
|
|
/* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */
|
|
#define EN_REST_WAIT_VAL 0x2
|
|
#define EN_FEW_WAIT_VAL 0x8
|
|
#define CLK_DIS_WAIT_VAL 0x2
|
|
|
|
/* Transition delay shifts */
|
|
#define EN_REST_WAIT_SHIFT 20
|
|
#define EN_FEW_WAIT_SHIFT 16
|
|
#define CLK_DIS_WAIT_SHIFT 12
|
|
|
|
#define RETAIN_MEM BIT(14)
|
|
#define RETAIN_PERIPH BIT(13)
|
|
|
|
#define STATUS_POLL_TIMEOUT_US 1500
|
|
#define TIMEOUT_US 500
|
|
|
|
#define domain_to_gdsc(domain) container_of(domain, struct gdsc, pd)
|
|
|
|
enum gdsc_status {
|
|
GDSC_OFF,
|
|
GDSC_ON
|
|
};
|
|
|
|
/* Returns 1 if GDSC status is status, 0 if not, and < 0 on error */
|
|
static int gdsc_check_status(struct gdsc *sc, enum gdsc_status status)
|
|
{
|
|
unsigned int reg;
|
|
u32 val;
|
|
int ret;
|
|
|
|
if (sc->flags & POLL_CFG_GDSCR)
|
|
reg = sc->gdscr + CFG_GDSCR_OFFSET;
|
|
else if (sc->gds_hw_ctrl)
|
|
reg = sc->gds_hw_ctrl;
|
|
else
|
|
reg = sc->gdscr;
|
|
|
|
ret = regmap_read(sc->regmap, reg, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (sc->flags & POLL_CFG_GDSCR) {
|
|
switch (status) {
|
|
case GDSC_ON:
|
|
return !!(val & GDSC_POWER_UP_COMPLETE);
|
|
case GDSC_OFF:
|
|
return !!(val & GDSC_POWER_DOWN_COMPLETE);
|
|
}
|
|
}
|
|
|
|
switch (status) {
|
|
case GDSC_ON:
|
|
return !!(val & PWR_ON_MASK);
|
|
case GDSC_OFF:
|
|
return !(val & PWR_ON_MASK);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int gdsc_hwctrl(struct gdsc *sc, bool en)
|
|
{
|
|
u32 val = en ? HW_CONTROL_MASK : 0;
|
|
|
|
return regmap_update_bits(sc->regmap, sc->gdscr, HW_CONTROL_MASK, val);
|
|
}
|
|
|
|
static int gdsc_poll_status(struct gdsc *sc, enum gdsc_status status)
|
|
{
|
|
ktime_t start;
|
|
|
|
start = ktime_get();
|
|
do {
|
|
if (gdsc_check_status(sc, status))
|
|
return 0;
|
|
} while (ktime_us_delta(ktime_get(), start) < STATUS_POLL_TIMEOUT_US);
|
|
|
|
if (gdsc_check_status(sc, status))
|
|
return 0;
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int gdsc_update_collapse_bit(struct gdsc *sc, bool val)
|
|
{
|
|
u32 reg, mask;
|
|
int ret;
|
|
|
|
if (sc->collapse_mask) {
|
|
reg = sc->collapse_ctrl;
|
|
mask = sc->collapse_mask;
|
|
} else {
|
|
reg = sc->gdscr;
|
|
mask = SW_COLLAPSE_MASK;
|
|
}
|
|
|
|
ret = regmap_update_bits(sc->regmap, reg, mask, val ? mask : 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void log_gdsc_debug_regs(struct gdsc *sc)
|
|
{
|
|
u32 val;
|
|
|
|
pr_err("Dumping %s registers\n", sc->pd.name);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl, &val);
|
|
pr_err("HW_CTRL_CFG1_GDSR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gdscr, &val);
|
|
pr_err("GDSCR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gdscr + 4, &val);
|
|
pr_err("CFG_GDSCR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gdscr + 8, &val);
|
|
pr_err("CFG2_GDSCR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gdscr + 0xc, &val);
|
|
pr_err("CFG3_GDSCR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gdscr + 0x10, &val);
|
|
pr_err("CFG4_GDSCR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl, &val);
|
|
pr_err("HW_CTRL_CFG1_GDSR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl + 4, &val);
|
|
pr_err("HW_CTRL_CFG2_GDSR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl + 8, &val);
|
|
pr_err("HW_CTRL_DVM_STATUS_GDSR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl + 0xc, &val);
|
|
pr_err("HW_CTRL_HALT1_STATUS_GDSR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl + 0x10, &val);
|
|
pr_err("HW_CTRL_HALT2_STATUS_GDSR : 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl + 0x14, &val);
|
|
pr_err("HW_CTRL_REQ_SW_GDSR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl + 0x18, &val);
|
|
pr_err("HW_CTRL_IRQ_STATUS_GDSR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl + 0x20, &val);
|
|
pr_err("HW_CTRL_IRQ_CLEAR_GDSR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl, &val);
|
|
pr_err("HW_CTRL_CFG1_GDSR: 0x%.8x\n\n", val);
|
|
}
|
|
|
|
|
|
static int gdsc_toggle_logic(struct gdsc *sc, enum gdsc_status status,
|
|
bool wait)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
if (status == GDSC_ON && sc->rsupply) {
|
|
ret = regulator_enable(sc->rsupply);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
regmap_read(sc->regmap, sc->gdscr, &val);
|
|
if (val & HW_CONTROL_MASK) {
|
|
pr_debug("%s in HW control mode\n", sc->pd.name);
|
|
return 0;
|
|
}
|
|
|
|
ret = gdsc_update_collapse_bit(sc, status == GDSC_OFF);
|
|
|
|
/* If disabling votable gdscs, don't poll on status */
|
|
if ((sc->flags & VOTABLE) && status == GDSC_OFF && !wait) {
|
|
/*
|
|
* Add a short delay here to ensure that an enable
|
|
* right after it was disabled does not put it in an
|
|
* unknown state
|
|
*/
|
|
udelay(TIMEOUT_US);
|
|
goto out;
|
|
}
|
|
|
|
if (sc->gds_hw_ctrl) {
|
|
/*
|
|
* The gds hw controller asserts/de-asserts the status bit soon
|
|
* after it receives a power on/off request from a master.
|
|
* The controller then takes around 8 xo cycles to start its
|
|
* internal state machine and update the status bit. During
|
|
* this time, the status bit does not reflect the true status
|
|
* of the core.
|
|
* Add a delay of 1 us between writing to the SW_COLLAPSE bit
|
|
* and polling the status bit.
|
|
*/
|
|
udelay(1);
|
|
}
|
|
|
|
ret = gdsc_poll_status(sc, status);
|
|
if (ret && sc->gds_hw_ctrl) {
|
|
pr_err("%s enable timed out, Re-polling\n", sc->pd.name);
|
|
log_gdsc_debug_regs(sc);
|
|
ret = gdsc_poll_status(sc, status);
|
|
if (ret) {
|
|
log_gdsc_debug_regs(sc);
|
|
udelay(500);
|
|
log_gdsc_debug_regs(sc);
|
|
udelay(1000);
|
|
log_gdsc_debug_regs(sc);
|
|
}
|
|
}
|
|
WARN(ret, "%s status stuck at 'o%s'", sc->pd.name, status ? "ff" : "n");
|
|
|
|
out:
|
|
if (!ret && status == GDSC_OFF && sc->rsupply) {
|
|
ret = regulator_disable(sc->rsupply);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int gdsc_deassert_reset(struct gdsc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sc->reset_count; i++)
|
|
sc->rcdev->ops->deassert(sc->rcdev, sc->resets[i]);
|
|
return 0;
|
|
}
|
|
|
|
static inline int gdsc_assert_reset(struct gdsc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sc->reset_count; i++)
|
|
sc->rcdev->ops->assert(sc->rcdev, sc->resets[i]);
|
|
return 0;
|
|
}
|
|
|
|
static inline void gdsc_force_mem_on(struct gdsc *sc)
|
|
{
|
|
int i;
|
|
u32 mask = RETAIN_MEM;
|
|
|
|
if (!(sc->flags & NO_RET_PERIPH))
|
|
mask |= RETAIN_PERIPH;
|
|
|
|
for (i = 0; i < sc->cxc_count; i++)
|
|
regmap_update_bits(sc->regmap, sc->cxcs[i], mask, mask);
|
|
}
|
|
|
|
static inline void gdsc_clear_mem_on(struct gdsc *sc)
|
|
{
|
|
int i;
|
|
u32 mask = RETAIN_MEM;
|
|
|
|
if (!(sc->flags & NO_RET_PERIPH))
|
|
mask |= RETAIN_PERIPH;
|
|
|
|
for (i = 0; i < sc->cxc_count; i++)
|
|
regmap_update_bits(sc->regmap, sc->cxcs[i], mask, 0);
|
|
}
|
|
|
|
static inline void gdsc_deassert_clamp_io(struct gdsc *sc)
|
|
{
|
|
regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
|
|
GMEM_CLAMP_IO_MASK, 0);
|
|
}
|
|
|
|
static inline void gdsc_assert_clamp_io(struct gdsc *sc)
|
|
{
|
|
regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
|
|
GMEM_CLAMP_IO_MASK, 1);
|
|
}
|
|
|
|
static inline void gdsc_assert_reset_aon(struct gdsc *sc)
|
|
{
|
|
regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
|
|
GMEM_RESET_MASK, 1);
|
|
udelay(1);
|
|
regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
|
|
GMEM_RESET_MASK, 0);
|
|
}
|
|
|
|
static void gdsc_retain_ff_on(struct gdsc *sc)
|
|
{
|
|
u32 mask = GDSC_RETAIN_FF_ENABLE;
|
|
|
|
regmap_update_bits(sc->regmap, sc->gdscr, mask, mask);
|
|
}
|
|
|
|
static int gdsc_enable(struct generic_pm_domain *domain)
|
|
{
|
|
struct gdsc *sc = domain_to_gdsc(domain);
|
|
int ret;
|
|
|
|
if (sc->pwrsts == PWRSTS_ON)
|
|
return gdsc_deassert_reset(sc);
|
|
|
|
if (sc->flags & SW_RESET) {
|
|
gdsc_assert_reset(sc);
|
|
udelay(1);
|
|
gdsc_deassert_reset(sc);
|
|
}
|
|
|
|
if (sc->flags & CLAMP_IO) {
|
|
if (sc->flags & AON_RESET)
|
|
gdsc_assert_reset_aon(sc);
|
|
gdsc_deassert_clamp_io(sc);
|
|
}
|
|
|
|
ret = gdsc_toggle_logic(sc, GDSC_ON, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (sc->pwrsts & PWRSTS_OFF)
|
|
gdsc_force_mem_on(sc);
|
|
|
|
/*
|
|
* If clocks to this power domain were already on, they will take an
|
|
* additional 4 clock cycles to re-enable after the power domain is
|
|
* enabled. Delay to account for this. A delay is also needed to ensure
|
|
* clocks are not enabled within 400ns of enabling power to the
|
|
* memories.
|
|
*/
|
|
udelay(1);
|
|
|
|
/* Turn on HW trigger mode if supported */
|
|
if (sc->flags & HW_CTRL) {
|
|
ret = gdsc_hwctrl(sc, true);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* Wait for the GDSC to go through a power down and
|
|
* up cycle. In case a firmware ends up polling status
|
|
* bits for the gdsc, it might read an 'on' status before
|
|
* the GDSC can finish the power cycle.
|
|
* We wait 1us before returning to ensure the firmware
|
|
* can't immediately poll the status bits.
|
|
*/
|
|
udelay(1);
|
|
}
|
|
|
|
if (sc->flags & RETAIN_FF_ENABLE)
|
|
gdsc_retain_ff_on(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gdsc_disable(struct generic_pm_domain *domain)
|
|
{
|
|
struct gdsc *sc = domain_to_gdsc(domain);
|
|
int ret;
|
|
|
|
if (sc->pwrsts == PWRSTS_ON)
|
|
return gdsc_assert_reset(sc);
|
|
|
|
/* Turn off HW trigger mode if supported */
|
|
if (sc->flags & HW_CTRL) {
|
|
if (sc->flags & HW_CTRL_SKIP_DIS) {
|
|
if (sc->rsupply)
|
|
return regulator_disable(sc->rsupply);
|
|
|
|
return 0;
|
|
}
|
|
|
|
ret = gdsc_hwctrl(sc, false);
|
|
if (ret < 0)
|
|
return ret;
|
|
/*
|
|
* Wait for the GDSC to go through a power down and
|
|
* up cycle. In case we end up polling status
|
|
* bits for the gdsc before the power cycle is completed
|
|
* it might read an 'on' status wrongly.
|
|
*/
|
|
udelay(1);
|
|
|
|
ret = gdsc_poll_status(sc, GDSC_ON);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (sc->pwrsts & PWRSTS_OFF)
|
|
gdsc_clear_mem_on(sc);
|
|
|
|
/*
|
|
* If the GDSC supports only a Retention state, apart from ON,
|
|
* leave it in ON state.
|
|
* There is no SW control to transition the GDSC into
|
|
* Retention state. This happens in HW when the parent
|
|
* domain goes down to a Low power state
|
|
*/
|
|
if (sc->pwrsts == PWRSTS_RET_ON)
|
|
return 0;
|
|
|
|
ret = gdsc_toggle_logic(sc, GDSC_OFF, domain->synced_poweroff);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (sc->flags & CLAMP_IO)
|
|
gdsc_assert_clamp_io(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gdsc_init(struct gdsc *sc)
|
|
{
|
|
u32 mask, val;
|
|
int on, ret;
|
|
|
|
/*
|
|
* Disable HW trigger: collapse/restore occur based on registers writes.
|
|
* Disable SW override: Use hardware state-machine for sequencing.
|
|
* Configure wait time between states.
|
|
*/
|
|
mask = HW_CONTROL_MASK | SW_OVERRIDE_MASK |
|
|
EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK;
|
|
|
|
if (!sc->en_rest_wait_val)
|
|
sc->en_rest_wait_val = EN_REST_WAIT_VAL;
|
|
if (!sc->en_few_wait_val)
|
|
sc->en_few_wait_val = EN_FEW_WAIT_VAL;
|
|
if (!sc->clk_dis_wait_val)
|
|
sc->clk_dis_wait_val = CLK_DIS_WAIT_VAL;
|
|
|
|
val = sc->en_rest_wait_val << EN_REST_WAIT_SHIFT |
|
|
sc->en_few_wait_val << EN_FEW_WAIT_SHIFT |
|
|
sc->clk_dis_wait_val << CLK_DIS_WAIT_SHIFT;
|
|
|
|
ret = regmap_update_bits(sc->regmap, sc->gdscr, mask, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Force gdsc ON if only ON state is supported */
|
|
if (sc->pwrsts == PWRSTS_ON) {
|
|
ret = gdsc_toggle_logic(sc, GDSC_ON, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
on = gdsc_check_status(sc, GDSC_ON);
|
|
if (on < 0)
|
|
return on;
|
|
|
|
if (on) {
|
|
/* The regulator must be on, sync the kernel state */
|
|
if (sc->rsupply) {
|
|
ret = regulator_enable(sc->rsupply);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Votable GDSCs can be ON due to Vote from other masters.
|
|
* If a Votable GDSC is ON, make sure we have a Vote.
|
|
*/
|
|
if (sc->flags & VOTABLE) {
|
|
ret = gdsc_update_collapse_bit(sc, false);
|
|
if (ret)
|
|
goto err_disable_supply;
|
|
}
|
|
|
|
/* Turn on HW trigger mode if supported */
|
|
if (sc->flags & HW_CTRL) {
|
|
ret = gdsc_hwctrl(sc, true);
|
|
if (ret < 0)
|
|
goto err_disable_supply;
|
|
}
|
|
|
|
/*
|
|
* Make sure the retain bit is set if the GDSC is already on,
|
|
* otherwise we end up turning off the GDSC and destroying all
|
|
* the register contents that we thought we were saving.
|
|
*/
|
|
if (sc->flags & RETAIN_FF_ENABLE)
|
|
gdsc_retain_ff_on(sc);
|
|
} else if (sc->flags & ALWAYS_ON) {
|
|
/* If ALWAYS_ON GDSCs are not ON, turn them ON */
|
|
gdsc_enable(&sc->pd);
|
|
on = true;
|
|
}
|
|
|
|
if (on || (sc->pwrsts & PWRSTS_RET))
|
|
gdsc_force_mem_on(sc);
|
|
else
|
|
gdsc_clear_mem_on(sc);
|
|
|
|
if (sc->flags & ALWAYS_ON)
|
|
sc->pd.flags |= GENPD_FLAG_ALWAYS_ON;
|
|
if (!sc->pd.power_off)
|
|
sc->pd.power_off = gdsc_disable;
|
|
if (!sc->pd.power_on)
|
|
sc->pd.power_on = gdsc_enable;
|
|
|
|
ret = pm_genpd_init(&sc->pd, NULL, !on);
|
|
if (ret)
|
|
goto err_disable_supply;
|
|
|
|
return 0;
|
|
|
|
err_disable_supply:
|
|
if (on && sc->rsupply)
|
|
regulator_disable(sc->rsupply);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int gdsc_register(struct gdsc_desc *desc,
|
|
struct reset_controller_dev *rcdev, struct regmap *regmap)
|
|
{
|
|
int i, ret;
|
|
struct genpd_onecell_data *data;
|
|
struct device *dev = desc->dev;
|
|
struct gdsc **scs = desc->scs;
|
|
size_t num = desc->num;
|
|
|
|
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->domains = devm_kcalloc(dev, num, sizeof(*data->domains),
|
|
GFP_KERNEL);
|
|
if (!data->domains)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
if (!scs[i] || !scs[i]->supply)
|
|
continue;
|
|
|
|
scs[i]->rsupply = devm_regulator_get(dev, scs[i]->supply);
|
|
if (IS_ERR(scs[i]->rsupply))
|
|
return PTR_ERR(scs[i]->rsupply);
|
|
}
|
|
|
|
data->num_domains = num;
|
|
for (i = 0; i < num; i++) {
|
|
if (!scs[i])
|
|
continue;
|
|
scs[i]->regmap = regmap;
|
|
scs[i]->rcdev = rcdev;
|
|
ret = gdsc_init(scs[i]);
|
|
if (ret)
|
|
return ret;
|
|
data->domains[i] = &scs[i]->pd;
|
|
}
|
|
|
|
/* Add subdomains */
|
|
for (i = 0; i < num; i++) {
|
|
if (!scs[i])
|
|
continue;
|
|
if (scs[i]->parent)
|
|
pm_genpd_add_subdomain(scs[i]->parent, &scs[i]->pd);
|
|
else if (!IS_ERR_OR_NULL(dev->pm_domain))
|
|
pm_genpd_add_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd);
|
|
}
|
|
|
|
return of_genpd_add_provider_onecell(dev->of_node, data);
|
|
}
|
|
|
|
void gdsc_unregister(struct gdsc_desc *desc)
|
|
{
|
|
int i;
|
|
struct device *dev = desc->dev;
|
|
struct gdsc **scs = desc->scs;
|
|
size_t num = desc->num;
|
|
|
|
/* Remove subdomains */
|
|
for (i = 0; i < num; i++) {
|
|
if (!scs[i])
|
|
continue;
|
|
if (scs[i]->parent)
|
|
pm_genpd_remove_subdomain(scs[i]->parent, &scs[i]->pd);
|
|
else if (!IS_ERR_OR_NULL(dev->pm_domain))
|
|
pm_genpd_remove_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd);
|
|
}
|
|
of_genpd_del_provider(dev->of_node);
|
|
}
|
|
|
|
/*
|
|
* On SDM845+ the GPU GX domain is *almost* entirely controlled by the GMU
|
|
* running in the CX domain so the CPU doesn't need to know anything about the
|
|
* GX domain EXCEPT....
|
|
*
|
|
* Hardware constraints dictate that the GX be powered down before the CX. If
|
|
* the GMU crashes it could leave the GX on. In order to successfully bring back
|
|
* the device the CPU needs to disable the GX headswitch. There being no sane
|
|
* way to reach in and touch that register from deep inside the GPU driver we
|
|
* need to set up the infrastructure to be able to ensure that the GPU can
|
|
* ensure that the GX is off during this super special case. We do this by
|
|
* defining a GX gdsc with a dummy enable function and a "default" disable
|
|
* function.
|
|
*
|
|
* This allows us to attach with genpd_dev_pm_attach_by_name() in the GPU
|
|
* driver. During power up, nothing will happen from the CPU (and the GMU will
|
|
* power up normally but during power down this will ensure that the GX domain
|
|
* is *really* off - this gives us a semi standard way of doing what we need.
|
|
*/
|
|
int gdsc_gx_do_nothing_enable(struct generic_pm_domain *domain)
|
|
{
|
|
struct gdsc *sc = domain_to_gdsc(domain);
|
|
int ret = 0;
|
|
|
|
/* Enable the parent supply, when controlled through the regulator framework. */
|
|
if (sc->rsupply)
|
|
ret = regulator_enable(sc->rsupply);
|
|
|
|
/* Do nothing with the GDSC itself */
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(gdsc_gx_do_nothing_enable);
|
|
|
|
|
|
static void gdsc_debug_print_registers(struct gdsc *sc)
|
|
{
|
|
u32 val;
|
|
|
|
regmap_read(sc->regmap, sc->gdscr, &val);
|
|
pr_err("GDSCR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gdscr + 4, &val);
|
|
pr_err("CFG_GDSCR: 0x%.8x\n", val);
|
|
regmap_read(sc->regmap, sc->gdscr + 8, &val);
|
|
pr_err("CFG2_GDSCR: 0x%.8x\n", val);
|
|
|
|
if (sc->gds_hw_ctrl) {
|
|
regmap_read(sc->regmap, sc->gds_hw_ctrl, &val);
|
|
pr_err("GDS_HW_CTRL: 0x%.8x\n", val);
|
|
}
|
|
|
|
if (sc->collapse_ctrl) {
|
|
regmap_read(sc->regmap, sc->collapse_ctrl, &val);
|
|
pr_err("COLLAPSE_CTRL: 0x%.8x\n", val);
|
|
}
|
|
}
|
|
|
|
static void genpd_dump_consumers(struct generic_pm_domain *genpd)
|
|
{
|
|
static const char * const status_lookup[] = {
|
|
[RPM_ACTIVE] = "active",
|
|
[RPM_RESUMING] = "resuming",
|
|
[RPM_SUSPENDED] = "suspended",
|
|
[RPM_SUSPENDING] = "suspending"
|
|
};
|
|
struct pm_domain_data *pm_data;
|
|
const char *kobj_path;
|
|
const char *p = "";
|
|
struct device *dev;
|
|
|
|
pr_err("%-30s %-50s\n", genpd->name, genpd->status ? "off" : "on");
|
|
|
|
pr_err("Consumers:\n");
|
|
list_for_each_entry(pm_data, &genpd->dev_list, list_node) {
|
|
|
|
kobj_path = kobject_get_path(&pm_data->dev->kobj,
|
|
genpd->flags & GENPD_FLAG_IRQ_SAFE ?
|
|
GFP_ATOMIC : GFP_KERNEL);
|
|
if (kobj_path == NULL)
|
|
continue;
|
|
|
|
dev = pm_data->dev;
|
|
if (dev->power.runtime_error)
|
|
p = "error";
|
|
else if (dev->power.disable_depth)
|
|
p = "unsupported";
|
|
else if (dev->power.runtime_status < ARRAY_SIZE(status_lookup))
|
|
p = status_lookup[dev->power.runtime_status];
|
|
|
|
pr_err("%-50s %-25s\n", kobj_path, p);
|
|
|
|
pr_err("usage_count:%d\n", atomic_read(&dev->power.usage_count));
|
|
pr_err("last_busy:%llu\n", dev->power.last_busy);
|
|
pr_err("timer_expires:%llu\n", dev->power.timer_expires);
|
|
pr_err("timer_state:%d\n", dev->power.suspend_timer.state);
|
|
pr_err("rpm_request:%d\n", dev->power.request);
|
|
pr_err("request_pending:%u\n", dev->power.request_pending);
|
|
pr_err("timer_autosuspends:%d\n", dev->power.timer_autosuspends);
|
|
pr_err("runtime_error:%d\n", dev->power.runtime_error);
|
|
pr_err("autosuspend_delay:%d\n", dev->power.autosuspend_delay);
|
|
pr_err("disable_depth:%u\n", dev->power.disable_depth);
|
|
pr_err("child_count:%d\n", atomic_read(&dev->power.child_count));
|
|
pr_err("deferred_resume:%u\n", dev->power.deferred_resume);
|
|
pr_err("ignore_children:%u\n", dev->power.ignore_children);
|
|
pr_err("use_autosuspend:%u\n", dev->power.use_autosuspend);
|
|
pr_err("current_time: %llu\n", ktime_get_mono_fast_ns());
|
|
|
|
kfree(kobj_path);
|
|
}
|
|
|
|
pr_err("device_count: %d\n", genpd->device_count);
|
|
pr_err("prepared_count: %d\n", genpd->prepared_count);
|
|
pr_err("suspended_count: %d\n", genpd->suspended_count);
|
|
pr_err("sd_count: %d\n", atomic_read(&genpd->sd_count));
|
|
}
|
|
|
|
void qcom_gdsc_pd_dump(struct device *device)
|
|
{
|
|
struct generic_pm_domain *genpd, *child;
|
|
struct gpd_link *link;
|
|
struct gdsc *sc;
|
|
|
|
if (!device) {
|
|
pr_err("Null device handle passed\n");
|
|
return;
|
|
}
|
|
|
|
if (device && IS_ERR_OR_NULL(device->pm_domain)) {
|
|
pr_err("No pm_domain linked to device\n");
|
|
return;
|
|
}
|
|
|
|
genpd = pd_to_genpd(device->pm_domain);
|
|
if (IS_ERR(genpd)) {
|
|
pr_err("No pd linked to device\n");
|
|
return;
|
|
}
|
|
|
|
if (mutex_lock_interruptible(&genpd->mlock)) {
|
|
pr_err("Failed to acquire %s genpd lock\n", genpd->name);
|
|
return;
|
|
}
|
|
|
|
genpd_dump_consumers(genpd);
|
|
|
|
pr_err("Child_domains:\n");
|
|
list_for_each_entry(link, &genpd->parent_links, parent_node) {
|
|
child = link->child;
|
|
if (mutex_lock_interruptible(&child->mlock)) {
|
|
pr_err("Failed to acquire %s genpd lock\n", child->name);
|
|
mutex_unlock(&genpd->mlock);
|
|
return;
|
|
}
|
|
genpd_dump_consumers(child);
|
|
mutex_unlock(&child->mlock);
|
|
}
|
|
|
|
sc = domain_to_gdsc(genpd);
|
|
pr_err("Dumping %s registers\n", sc->pd.name);
|
|
gdsc_debug_print_registers(sc);
|
|
|
|
mutex_unlock(&genpd->mlock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(qcom_gdsc_pd_dump);
|