// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2024 Google LLC. //! User pointers. //! //! C header: [`include/linux/uaccess.h`](srctree/include/linux/uaccess.h) use crate::{ bindings, error::code::*, error::Result, types::{AsBytes, FromBytes}, }; use alloc::vec::Vec; use core::ffi::{c_ulong, c_void}; use core::mem::{size_of, MaybeUninit}; /// A pointer to an area in userspace memory, which can be either read-only or /// read-write. /// /// All methods on this struct are safe: attempting to read or write invalid /// pointers will return `EFAULT`. Concurrent access, *including data races /// to/from userspace memory*, is permitted, because fundamentally another /// userspace thread/process could always be modifying memory at the same time /// (in the same way that userspace Rust's [`std::io`] permits data races with /// the contents of files on disk). In the presence of a race, the exact byte /// values read/written are unspecified but the operation is well-defined. /// Kernelspace code should validate its copy of data after completing a read, /// and not expect that multiple reads of the same address will return the same /// value. /// /// These APIs are designed to make it difficult to accidentally write TOCTOU /// (time-of-check to time-of-use) bugs. Every time a memory location is read, /// the reader's position is advanced by the read length and the next read will /// start from there. This helps prevent accidentally reading the same location /// twice and causing a TOCTOU bug. /// /// Creating a [`UserSliceReader`] and/or [`UserSliceWriter`] consumes the /// `UserSlice`, helping ensure that there aren't multiple readers or writers to /// the same location. /// /// If double-fetching a memory location is necessary for some reason, then that /// is done by creating multiple readers to the same memory location, e.g. using /// [`clone_reader`]. /// /// # Examples /// /// Takes a region of userspace memory from the current process, and modify it /// by adding one to every byte in the region. /// /// ```no_run /// use alloc::vec::Vec; /// use core::ffi::c_void; /// use kernel::error::Result; /// use kernel::uaccess::UserSlice; /// /// pub fn bytes_add_one(uptr: *mut c_void, len: usize) -> Result<()> { /// let (read, mut write) = UserSlice::new(uptr, len).reader_writer(); /// /// let mut buf = Vec::new(); /// read.read_all(&mut buf)?; /// /// for b in &mut buf { /// *b = b.wrapping_add(1); /// } /// /// write.write_slice(&buf)?; /// Ok(()) /// } /// ``` /// /// Example illustrating a TOCTOU (time-of-check to time-of-use) bug. /// /// ```no_run /// use alloc::vec::Vec; /// use core::ffi::c_void; /// use kernel::error::{code::EINVAL, Result}; /// use kernel::uaccess::UserSlice; /// /// /// Returns whether the data in this region is valid. /// fn is_valid(uptr: *mut c_void, len: usize) -> Result { /// let read = UserSlice::new(uptr, len).reader(); /// /// let mut buf = Vec::new(); /// read.read_all(&mut buf)?; /// /// todo!() /// } /// /// /// Returns the bytes behind this user pointer if they are valid. /// pub fn get_bytes_if_valid(uptr: *mut c_void, len: usize) -> Result> { /// if !is_valid(uptr, len)? { /// return Err(EINVAL); /// } /// /// let read = UserSlice::new(uptr, len).reader(); /// /// let mut buf = Vec::new(); /// read.read_all(&mut buf)?; /// /// // THIS IS A BUG! The bytes could have changed since we checked them. /// // /// // To avoid this kind of bug, don't call `UserSlice::new` multiple /// // times with the same address. /// Ok(buf) /// } /// ``` /// /// [`std::io`]: https://doc.rust-lang.org/std/io/index.html /// [`clone_reader`]: UserSliceReader::clone_reader pub struct UserSlice { ptr: *mut c_void, length: usize, } impl UserSlice { /// Constructs a user slice from a raw pointer and a length in bytes. /// /// Constructing a [`UserSlice`] performs no checks on the provided address /// and length, it can safely be constructed inside a kernel thread with no /// current userspace process. Reads and writes wrap the kernel APIs /// `copy_from_user` and `copy_to_user`, which check the memory map of the /// current process and enforce that the address range is within the user /// range (no additional calls to `access_ok` are needed). /// /// Callers must be careful to avoid time-of-check-time-of-use /// (TOCTOU) issues. The simplest way is to create a single instance of /// [`UserSlice`] per user memory block as it reads each byte at /// most once. pub fn new(ptr: *mut c_void, length: usize) -> Self { UserSlice { ptr, length } } /// Reads the entirety of the user slice, appending it to the end of the /// provided buffer. /// /// Fails with `EFAULT` if the read encounters a page fault. pub fn read_all(self, buf: &mut Vec) -> Result<()> { self.reader().read_all(buf) } /// Constructs a [`UserSliceReader`]. pub fn reader(self) -> UserSliceReader { UserSliceReader { ptr: self.ptr, length: self.length, } } /// Constructs a [`UserSliceWriter`]. pub fn writer(self) -> UserSliceWriter { UserSliceWriter { ptr: self.ptr, length: self.length, } } /// Constructs both a [`UserSliceReader`] and a [`UserSliceWriter`]. /// /// Usually when this is used, you will first read the data, and then /// overwrite it afterwards. pub fn reader_writer(self) -> (UserSliceReader, UserSliceWriter) { ( UserSliceReader { ptr: self.ptr, length: self.length, }, UserSliceWriter { ptr: self.ptr, length: self.length, }, ) } } /// A reader for [`UserSlice`]. /// /// Used to incrementally read from the user slice. pub struct UserSliceReader { ptr: *mut c_void, length: usize, } impl UserSliceReader { /// Skip the provided number of bytes. /// /// Returns an error if skipping more than the length of the buffer. pub fn skip(&mut self, num_skip: usize) -> Result { // Update `self.length` first since that's the fallible part of this // operation. self.length = self.length.checked_sub(num_skip).ok_or(EFAULT)?; self.ptr = self.ptr.wrapping_byte_add(num_skip); Ok(()) } /// Create a reader that can access the same range of data. /// /// Reading from the clone does not advance the current reader. /// /// The caller should take care to not introduce TOCTOU issues, as described /// in the documentation for [`UserSlice`]. pub fn clone_reader(&self) -> UserSliceReader { UserSliceReader { ptr: self.ptr, length: self.length, } } /// Returns the number of bytes left to be read from this reader. /// /// Note that even reading less than this number of bytes may fail. pub fn len(&self) -> usize { self.length } /// Returns `true` if no data is available in the io buffer. pub fn is_empty(&self) -> bool { self.length == 0 } /// Reads raw data from the user slice into a raw kernel buffer. /// /// Fails with `EFAULT` if the read encounters a page fault. /// /// # Safety /// /// The `out` pointer must be valid for writing `len` bytes. pub unsafe fn read_raw(&mut self, out: *mut u8, len: usize) -> Result { if len > self.length { return Err(EFAULT); } let Ok(len_ulong) = c_ulong::try_from(len) else { return Err(EFAULT); }; // SAFETY: The caller promises that `out` is valid for writing `len` bytes. let res = unsafe { bindings::copy_from_user(out.cast::(), self.ptr, len_ulong) }; if res != 0 { return Err(EFAULT); } // Userspace pointers are not directly dereferencable by the kernel, so // we cannot use `add`, which has C-style rules for defined behavior. self.ptr = self.ptr.wrapping_byte_add(len); self.length -= len; Ok(()) } /// Reads a value of the specified type. /// /// Fails with `EFAULT` if the read encounters a page fault. pub fn read(&mut self) -> Result { let len = size_of::(); if len > self.length { return Err(EFAULT); } let Ok(len_ulong) = c_ulong::try_from(len) else { return Err(EFAULT); }; let mut out: MaybeUninit = MaybeUninit::uninit(); // SAFETY: The local variable `out` is valid for writing `size_of::()` bytes. // // By using the _copy_from_user variant, we skip the check_object_size // check that verifies the kernel pointer. This mirrors the logic on the // C side that skips the check when the length is a compile-time // constant. let res = unsafe { bindings::_copy_from_user(out.as_mut_ptr().cast::(), self.ptr, len_ulong) }; if res != 0 { return Err(EFAULT); } // Since this is not a pointer to a valid object in our program, // we cannot use `add`, which has C-style rules for defined // behavior. self.ptr = self.ptr.wrapping_byte_add(len); self.length -= len; // SAFETY: The read above has initialized all bytes in `out`, and since // `T` implements `FromBytes`, any bit-pattern is a valid value for this // type. Ok(unsafe { out.assume_init() }) } /// Reads the entirety of the user slice, appending it to the end of the /// provided buffer. /// /// Fails with `EFAULT` if the read encounters a page fault. pub fn read_all(mut self, buf: &mut Vec) -> Result<()> { let len = self.length; buf.try_reserve(len)?; // SAFETY: The call to `try_reserve` was successful, so the spare // capacity is at least `self.length` bytes long. unsafe { self.read_raw(buf.spare_capacity_mut().as_mut_ptr().cast(), len)? }; // SAFETY: Since the call to `read_raw` was successful, so the next // `len` bytes of the vector have been initialized. unsafe { buf.set_len(buf.len() + len) }; Ok(()) } } /// A writer for [`UserSlice`]. /// /// Used to incrementally write into the user slice. pub struct UserSliceWriter { ptr: *mut c_void, length: usize, } impl UserSliceWriter { /// Returns the amount of space remaining in this buffer. /// /// Note that even writing less than this number of bytes may fail. pub fn len(&self) -> usize { self.length } /// Returns `true` if no more data can be written to this buffer. pub fn is_empty(&self) -> bool { self.length == 0 } /// Writes raw data to this user pointer from a raw kernel buffer. /// /// Fails with `EFAULT` if the write encounters a page fault. /// /// # Safety /// /// The `data` pointer must be valid for reading `len` bytes. pub unsafe fn write_raw(&mut self, data: *const u8, len: usize) -> Result { if len > self.length { return Err(EFAULT); } let Ok(len_ulong) = c_ulong::try_from(len) else { return Err(EFAULT); }; let res = unsafe { bindings::copy_to_user(self.ptr, data.cast::(), len_ulong) }; if res != 0 { return Err(EFAULT); } // Userspace pointers are not directly dereferencable by the kernel, so // we cannot use `add`, which has C-style rules for defined behavior. self.ptr = self.ptr.wrapping_byte_add(len); self.length -= len; Ok(()) } /// Writes the provided slice to this user pointer. /// /// Fails with `EFAULT` if the write encounters a page fault. pub fn write_slice(&mut self, data: &[u8]) -> Result { let len = data.len(); let ptr = data.as_ptr(); // SAFETY: The pointer originates from a reference to a slice of length // `len`, so the pointer is valid for reading `len` bytes. unsafe { self.write_raw(ptr, len) } } /// Writes the provided Rust value to this userspace pointer. /// /// Fails with `EFAULT` if the write encounters a page fault. pub fn write(&mut self, value: &T) -> Result { let len = size_of::(); if len > self.length { return Err(EFAULT); } let Ok(len_ulong) = c_ulong::try_from(len) else { return Err(EFAULT); }; // SAFETY: The reference points to a value of type `T`, so it is valid // for reading `size_of::()` bytes. // // By using the _copy_to_user variant, we skip the check_object_size // check that verifies the kernel pointer. This mirrors the logic on the // C side that skips the check when the length is a compile-time // constant. let res = unsafe { bindings::_copy_to_user(self.ptr, (value as *const T).cast::(), len_ulong) }; if res != 0 { return Err(EFAULT); } // Since this is not a pointer to a valid object in our program, // we cannot use `add`, which has C-style rules for defined // behavior. self.ptr = self.ptr.wrapping_byte_add(len); self.length -= len; Ok(()) } }