Merge branch 'perfcounters-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perfcounters-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (58 commits) perf_counter: Fix perf_copy_attr() pointer arithmetic perf utils: Use a define for the maximum length of a trace event perf: Add timechart help text and add timechart to "perf help" tracing, x86, cpuidle: Move the end point of a C state in the power tracer perf utils: Be consistent about minimum text size in the svghelper perf timechart: Add "perf timechart record" perf: Add the timechart tool perf: Add a SVG helper library file tracing, perf: Convert the power tracer into an event tracer perf: Add a sample_event type to the event_union perf: Allow perf utilities to have "callback" options without arguments perf: Store trace event name/id pairs in perf.data perf: Add a timestamp to fork events sched_clock: Make it NMI safe perf_counter: Fix up swcounter throttling x86, perf_counter, bts: Optimize BTS overflow handling perf sched: Add --input=file option to builtin-sched.c perf trace: Sample timestamp and cpu when using record flag perf tools: Increase MAX_EVENT_LENGTH perf tools: Fix memory leak in read_ftrace_printk() ...
This commit is contained in:
@@ -2176,6 +2176,13 @@ static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
|
||||
data->nr_pages = nr_pages;
|
||||
atomic_set(&data->lock, -1);
|
||||
|
||||
if (counter->attr.watermark) {
|
||||
data->watermark = min_t(long, PAGE_SIZE * nr_pages,
|
||||
counter->attr.wakeup_watermark);
|
||||
}
|
||||
if (!data->watermark)
|
||||
data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4);
|
||||
|
||||
rcu_assign_pointer(counter->data, data);
|
||||
|
||||
return 0;
|
||||
@@ -2315,7 +2322,8 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma)
|
||||
lock_limit >>= PAGE_SHIFT;
|
||||
locked = vma->vm_mm->locked_vm + extra;
|
||||
|
||||
if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
|
||||
if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
|
||||
!capable(CAP_IPC_LOCK)) {
|
||||
ret = -EPERM;
|
||||
goto unlock;
|
||||
}
|
||||
@@ -2504,35 +2512,15 @@ __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
|
||||
/*
|
||||
* Output
|
||||
*/
|
||||
|
||||
struct perf_output_handle {
|
||||
struct perf_counter *counter;
|
||||
struct perf_mmap_data *data;
|
||||
unsigned long head;
|
||||
unsigned long offset;
|
||||
int nmi;
|
||||
int sample;
|
||||
int locked;
|
||||
unsigned long flags;
|
||||
};
|
||||
|
||||
static bool perf_output_space(struct perf_mmap_data *data,
|
||||
unsigned int offset, unsigned int head)
|
||||
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
|
||||
unsigned long offset, unsigned long head)
|
||||
{
|
||||
unsigned long tail;
|
||||
unsigned long mask;
|
||||
|
||||
if (!data->writable)
|
||||
return true;
|
||||
|
||||
mask = (data->nr_pages << PAGE_SHIFT) - 1;
|
||||
/*
|
||||
* Userspace could choose to issue a mb() before updating the tail
|
||||
* pointer. So that all reads will be completed before the write is
|
||||
* issued.
|
||||
*/
|
||||
tail = ACCESS_ONCE(data->user_page->data_tail);
|
||||
smp_rmb();
|
||||
|
||||
offset = (offset - tail) & mask;
|
||||
head = (head - tail) & mask;
|
||||
@@ -2633,8 +2621,8 @@ out:
|
||||
local_irq_restore(handle->flags);
|
||||
}
|
||||
|
||||
static void perf_output_copy(struct perf_output_handle *handle,
|
||||
const void *buf, unsigned int len)
|
||||
void perf_output_copy(struct perf_output_handle *handle,
|
||||
const void *buf, unsigned int len)
|
||||
{
|
||||
unsigned int pages_mask;
|
||||
unsigned int offset;
|
||||
@@ -2669,16 +2657,13 @@ static void perf_output_copy(struct perf_output_handle *handle,
|
||||
WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
|
||||
}
|
||||
|
||||
#define perf_output_put(handle, x) \
|
||||
perf_output_copy((handle), &(x), sizeof(x))
|
||||
|
||||
static int perf_output_begin(struct perf_output_handle *handle,
|
||||
struct perf_counter *counter, unsigned int size,
|
||||
int nmi, int sample)
|
||||
int perf_output_begin(struct perf_output_handle *handle,
|
||||
struct perf_counter *counter, unsigned int size,
|
||||
int nmi, int sample)
|
||||
{
|
||||
struct perf_counter *output_counter;
|
||||
struct perf_mmap_data *data;
|
||||
unsigned int offset, head;
|
||||
unsigned long tail, offset, head;
|
||||
int have_lost;
|
||||
struct {
|
||||
struct perf_event_header header;
|
||||
@@ -2716,16 +2701,23 @@ static int perf_output_begin(struct perf_output_handle *handle,
|
||||
perf_output_lock(handle);
|
||||
|
||||
do {
|
||||
/*
|
||||
* Userspace could choose to issue a mb() before updating the
|
||||
* tail pointer. So that all reads will be completed before the
|
||||
* write is issued.
|
||||
*/
|
||||
tail = ACCESS_ONCE(data->user_page->data_tail);
|
||||
smp_rmb();
|
||||
offset = head = atomic_long_read(&data->head);
|
||||
head += size;
|
||||
if (unlikely(!perf_output_space(data, offset, head)))
|
||||
if (unlikely(!perf_output_space(data, tail, offset, head)))
|
||||
goto fail;
|
||||
} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
|
||||
|
||||
handle->offset = offset;
|
||||
handle->head = head;
|
||||
|
||||
if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
|
||||
if (head - tail > data->watermark)
|
||||
atomic_set(&data->wakeup, 1);
|
||||
|
||||
if (have_lost) {
|
||||
@@ -2749,7 +2741,7 @@ out:
|
||||
return -ENOSPC;
|
||||
}
|
||||
|
||||
static void perf_output_end(struct perf_output_handle *handle)
|
||||
void perf_output_end(struct perf_output_handle *handle)
|
||||
{
|
||||
struct perf_counter *counter = handle->counter;
|
||||
struct perf_mmap_data *data = handle->data;
|
||||
@@ -2863,82 +2855,148 @@ static void perf_output_read(struct perf_output_handle *handle,
|
||||
perf_output_read_one(handle, counter);
|
||||
}
|
||||
|
||||
void perf_counter_output(struct perf_counter *counter, int nmi,
|
||||
struct perf_sample_data *data)
|
||||
void perf_output_sample(struct perf_output_handle *handle,
|
||||
struct perf_event_header *header,
|
||||
struct perf_sample_data *data,
|
||||
struct perf_counter *counter)
|
||||
{
|
||||
u64 sample_type = data->type;
|
||||
|
||||
perf_output_put(handle, *header);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_IP)
|
||||
perf_output_put(handle, data->ip);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_TID)
|
||||
perf_output_put(handle, data->tid_entry);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_TIME)
|
||||
perf_output_put(handle, data->time);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_ADDR)
|
||||
perf_output_put(handle, data->addr);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_ID)
|
||||
perf_output_put(handle, data->id);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_STREAM_ID)
|
||||
perf_output_put(handle, data->stream_id);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_CPU)
|
||||
perf_output_put(handle, data->cpu_entry);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_PERIOD)
|
||||
perf_output_put(handle, data->period);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_READ)
|
||||
perf_output_read(handle, counter);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_CALLCHAIN) {
|
||||
if (data->callchain) {
|
||||
int size = 1;
|
||||
|
||||
if (data->callchain)
|
||||
size += data->callchain->nr;
|
||||
|
||||
size *= sizeof(u64);
|
||||
|
||||
perf_output_copy(handle, data->callchain, size);
|
||||
} else {
|
||||
u64 nr = 0;
|
||||
perf_output_put(handle, nr);
|
||||
}
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_RAW) {
|
||||
if (data->raw) {
|
||||
perf_output_put(handle, data->raw->size);
|
||||
perf_output_copy(handle, data->raw->data,
|
||||
data->raw->size);
|
||||
} else {
|
||||
struct {
|
||||
u32 size;
|
||||
u32 data;
|
||||
} raw = {
|
||||
.size = sizeof(u32),
|
||||
.data = 0,
|
||||
};
|
||||
perf_output_put(handle, raw);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void perf_prepare_sample(struct perf_event_header *header,
|
||||
struct perf_sample_data *data,
|
||||
struct perf_counter *counter,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
int ret;
|
||||
u64 sample_type = counter->attr.sample_type;
|
||||
struct perf_output_handle handle;
|
||||
struct perf_event_header header;
|
||||
u64 ip;
|
||||
struct {
|
||||
u32 pid, tid;
|
||||
} tid_entry;
|
||||
struct perf_callchain_entry *callchain = NULL;
|
||||
int callchain_size = 0;
|
||||
u64 time;
|
||||
struct {
|
||||
u32 cpu, reserved;
|
||||
} cpu_entry;
|
||||
|
||||
header.type = PERF_EVENT_SAMPLE;
|
||||
header.size = sizeof(header);
|
||||
data->type = sample_type;
|
||||
|
||||
header.misc = 0;
|
||||
header.misc |= perf_misc_flags(data->regs);
|
||||
header->type = PERF_EVENT_SAMPLE;
|
||||
header->size = sizeof(*header);
|
||||
|
||||
header->misc = 0;
|
||||
header->misc |= perf_misc_flags(regs);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_IP) {
|
||||
ip = perf_instruction_pointer(data->regs);
|
||||
header.size += sizeof(ip);
|
||||
data->ip = perf_instruction_pointer(regs);
|
||||
|
||||
header->size += sizeof(data->ip);
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_TID) {
|
||||
/* namespace issues */
|
||||
tid_entry.pid = perf_counter_pid(counter, current);
|
||||
tid_entry.tid = perf_counter_tid(counter, current);
|
||||
data->tid_entry.pid = perf_counter_pid(counter, current);
|
||||
data->tid_entry.tid = perf_counter_tid(counter, current);
|
||||
|
||||
header.size += sizeof(tid_entry);
|
||||
header->size += sizeof(data->tid_entry);
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_TIME) {
|
||||
/*
|
||||
* Maybe do better on x86 and provide cpu_clock_nmi()
|
||||
*/
|
||||
time = sched_clock();
|
||||
data->time = perf_clock();
|
||||
|
||||
header.size += sizeof(u64);
|
||||
header->size += sizeof(data->time);
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_ADDR)
|
||||
header.size += sizeof(u64);
|
||||
header->size += sizeof(data->addr);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_ID)
|
||||
header.size += sizeof(u64);
|
||||
if (sample_type & PERF_SAMPLE_ID) {
|
||||
data->id = primary_counter_id(counter);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_STREAM_ID)
|
||||
header.size += sizeof(u64);
|
||||
header->size += sizeof(data->id);
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_STREAM_ID) {
|
||||
data->stream_id = counter->id;
|
||||
|
||||
header->size += sizeof(data->stream_id);
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_CPU) {
|
||||
header.size += sizeof(cpu_entry);
|
||||
data->cpu_entry.cpu = raw_smp_processor_id();
|
||||
data->cpu_entry.reserved = 0;
|
||||
|
||||
cpu_entry.cpu = raw_smp_processor_id();
|
||||
cpu_entry.reserved = 0;
|
||||
header->size += sizeof(data->cpu_entry);
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_PERIOD)
|
||||
header.size += sizeof(u64);
|
||||
header->size += sizeof(data->period);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_READ)
|
||||
header.size += perf_counter_read_size(counter);
|
||||
header->size += perf_counter_read_size(counter);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_CALLCHAIN) {
|
||||
callchain = perf_callchain(data->regs);
|
||||
int size = 1;
|
||||
|
||||
if (callchain) {
|
||||
callchain_size = (1 + callchain->nr) * sizeof(u64);
|
||||
header.size += callchain_size;
|
||||
} else
|
||||
header.size += sizeof(u64);
|
||||
data->callchain = perf_callchain(regs);
|
||||
|
||||
if (data->callchain)
|
||||
size += data->callchain->nr;
|
||||
|
||||
header->size += size * sizeof(u64);
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_RAW) {
|
||||
@@ -2950,69 +3008,23 @@ void perf_counter_output(struct perf_counter *counter, int nmi,
|
||||
size += sizeof(u32);
|
||||
|
||||
WARN_ON_ONCE(size & (sizeof(u64)-1));
|
||||
header.size += size;
|
||||
header->size += size;
|
||||
}
|
||||
}
|
||||
|
||||
ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
|
||||
if (ret)
|
||||
static void perf_counter_output(struct perf_counter *counter, int nmi,
|
||||
struct perf_sample_data *data,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
struct perf_output_handle handle;
|
||||
struct perf_event_header header;
|
||||
|
||||
perf_prepare_sample(&header, data, counter, regs);
|
||||
|
||||
if (perf_output_begin(&handle, counter, header.size, nmi, 1))
|
||||
return;
|
||||
|
||||
perf_output_put(&handle, header);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_IP)
|
||||
perf_output_put(&handle, ip);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_TID)
|
||||
perf_output_put(&handle, tid_entry);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_TIME)
|
||||
perf_output_put(&handle, time);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_ADDR)
|
||||
perf_output_put(&handle, data->addr);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_ID) {
|
||||
u64 id = primary_counter_id(counter);
|
||||
|
||||
perf_output_put(&handle, id);
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_STREAM_ID)
|
||||
perf_output_put(&handle, counter->id);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_CPU)
|
||||
perf_output_put(&handle, cpu_entry);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_PERIOD)
|
||||
perf_output_put(&handle, data->period);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_READ)
|
||||
perf_output_read(&handle, counter);
|
||||
|
||||
if (sample_type & PERF_SAMPLE_CALLCHAIN) {
|
||||
if (callchain)
|
||||
perf_output_copy(&handle, callchain, callchain_size);
|
||||
else {
|
||||
u64 nr = 0;
|
||||
perf_output_put(&handle, nr);
|
||||
}
|
||||
}
|
||||
|
||||
if (sample_type & PERF_SAMPLE_RAW) {
|
||||
if (data->raw) {
|
||||
perf_output_put(&handle, data->raw->size);
|
||||
perf_output_copy(&handle, data->raw->data, data->raw->size);
|
||||
} else {
|
||||
struct {
|
||||
u32 size;
|
||||
u32 data;
|
||||
} raw = {
|
||||
.size = sizeof(u32),
|
||||
.data = 0,
|
||||
};
|
||||
perf_output_put(&handle, raw);
|
||||
}
|
||||
}
|
||||
perf_output_sample(&handle, &header, data, counter);
|
||||
|
||||
perf_output_end(&handle);
|
||||
}
|
||||
@@ -3071,6 +3083,7 @@ struct perf_task_event {
|
||||
u32 ppid;
|
||||
u32 tid;
|
||||
u32 ptid;
|
||||
u64 time;
|
||||
} event;
|
||||
};
|
||||
|
||||
@@ -3078,9 +3091,12 @@ static void perf_counter_task_output(struct perf_counter *counter,
|
||||
struct perf_task_event *task_event)
|
||||
{
|
||||
struct perf_output_handle handle;
|
||||
int size = task_event->event.header.size;
|
||||
int size;
|
||||
struct task_struct *task = task_event->task;
|
||||
int ret = perf_output_begin(&handle, counter, size, 0, 0);
|
||||
int ret;
|
||||
|
||||
size = task_event->event.header.size;
|
||||
ret = perf_output_begin(&handle, counter, size, 0, 0);
|
||||
|
||||
if (ret)
|
||||
return;
|
||||
@@ -3091,7 +3107,10 @@ static void perf_counter_task_output(struct perf_counter *counter,
|
||||
task_event->event.tid = perf_counter_tid(counter, task);
|
||||
task_event->event.ptid = perf_counter_tid(counter, current);
|
||||
|
||||
task_event->event.time = perf_clock();
|
||||
|
||||
perf_output_put(&handle, task_event->event);
|
||||
|
||||
perf_output_end(&handle);
|
||||
}
|
||||
|
||||
@@ -3473,7 +3492,7 @@ static void perf_log_throttle(struct perf_counter *counter, int enable)
|
||||
.misc = 0,
|
||||
.size = sizeof(throttle_event),
|
||||
},
|
||||
.time = sched_clock(),
|
||||
.time = perf_clock(),
|
||||
.id = primary_counter_id(counter),
|
||||
.stream_id = counter->id,
|
||||
};
|
||||
@@ -3493,14 +3512,16 @@ static void perf_log_throttle(struct perf_counter *counter, int enable)
|
||||
* Generic counter overflow handling, sampling.
|
||||
*/
|
||||
|
||||
int perf_counter_overflow(struct perf_counter *counter, int nmi,
|
||||
struct perf_sample_data *data)
|
||||
static int __perf_counter_overflow(struct perf_counter *counter, int nmi,
|
||||
int throttle, struct perf_sample_data *data,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
int events = atomic_read(&counter->event_limit);
|
||||
int throttle = counter->pmu->unthrottle != NULL;
|
||||
struct hw_perf_counter *hwc = &counter->hw;
|
||||
int ret = 0;
|
||||
|
||||
throttle = (throttle && counter->pmu->unthrottle != NULL);
|
||||
|
||||
if (!throttle) {
|
||||
hwc->interrupts++;
|
||||
} else {
|
||||
@@ -3523,7 +3544,7 @@ int perf_counter_overflow(struct perf_counter *counter, int nmi,
|
||||
}
|
||||
|
||||
if (counter->attr.freq) {
|
||||
u64 now = sched_clock();
|
||||
u64 now = perf_clock();
|
||||
s64 delta = now - hwc->freq_stamp;
|
||||
|
||||
hwc->freq_stamp = now;
|
||||
@@ -3549,10 +3570,17 @@ int perf_counter_overflow(struct perf_counter *counter, int nmi,
|
||||
perf_counter_disable(counter);
|
||||
}
|
||||
|
||||
perf_counter_output(counter, nmi, data);
|
||||
perf_counter_output(counter, nmi, data, regs);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int perf_counter_overflow(struct perf_counter *counter, int nmi,
|
||||
struct perf_sample_data *data,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
return __perf_counter_overflow(counter, nmi, 1, data, regs);
|
||||
}
|
||||
|
||||
/*
|
||||
* Generic software counter infrastructure
|
||||
*/
|
||||
@@ -3588,9 +3616,11 @@ again:
|
||||
}
|
||||
|
||||
static void perf_swcounter_overflow(struct perf_counter *counter,
|
||||
int nmi, struct perf_sample_data *data)
|
||||
int nmi, struct perf_sample_data *data,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
struct hw_perf_counter *hwc = &counter->hw;
|
||||
int throttle = 0;
|
||||
u64 overflow;
|
||||
|
||||
data->period = counter->hw.last_period;
|
||||
@@ -3600,13 +3630,15 @@ static void perf_swcounter_overflow(struct perf_counter *counter,
|
||||
return;
|
||||
|
||||
for (; overflow; overflow--) {
|
||||
if (perf_counter_overflow(counter, nmi, data)) {
|
||||
if (__perf_counter_overflow(counter, nmi, throttle,
|
||||
data, regs)) {
|
||||
/*
|
||||
* We inhibit the overflow from happening when
|
||||
* hwc->interrupts == MAX_INTERRUPTS.
|
||||
*/
|
||||
break;
|
||||
}
|
||||
throttle = 1;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3618,7 +3650,8 @@ static void perf_swcounter_unthrottle(struct perf_counter *counter)
|
||||
}
|
||||
|
||||
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
|
||||
int nmi, struct perf_sample_data *data)
|
||||
int nmi, struct perf_sample_data *data,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
struct hw_perf_counter *hwc = &counter->hw;
|
||||
|
||||
@@ -3627,11 +3660,11 @@ static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
|
||||
if (!hwc->sample_period)
|
||||
return;
|
||||
|
||||
if (!data->regs)
|
||||
if (!regs)
|
||||
return;
|
||||
|
||||
if (!atomic64_add_negative(nr, &hwc->period_left))
|
||||
perf_swcounter_overflow(counter, nmi, data);
|
||||
perf_swcounter_overflow(counter, nmi, data, regs);
|
||||
}
|
||||
|
||||
static int perf_swcounter_is_counting(struct perf_counter *counter)
|
||||
@@ -3690,7 +3723,8 @@ static int perf_swcounter_match(struct perf_counter *counter,
|
||||
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
|
||||
enum perf_type_id type,
|
||||
u32 event, u64 nr, int nmi,
|
||||
struct perf_sample_data *data)
|
||||
struct perf_sample_data *data,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
struct perf_counter *counter;
|
||||
|
||||
@@ -3699,8 +3733,8 @@ static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
|
||||
|
||||
rcu_read_lock();
|
||||
list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
|
||||
if (perf_swcounter_match(counter, type, event, data->regs))
|
||||
perf_swcounter_add(counter, nr, nmi, data);
|
||||
if (perf_swcounter_match(counter, type, event, regs))
|
||||
perf_swcounter_add(counter, nr, nmi, data, regs);
|
||||
}
|
||||
rcu_read_unlock();
|
||||
}
|
||||
@@ -3721,7 +3755,8 @@ static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
|
||||
|
||||
static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
|
||||
u64 nr, int nmi,
|
||||
struct perf_sample_data *data)
|
||||
struct perf_sample_data *data,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
|
||||
int *recursion = perf_swcounter_recursion_context(cpuctx);
|
||||
@@ -3734,7 +3769,7 @@ static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
|
||||
barrier();
|
||||
|
||||
perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
|
||||
nr, nmi, data);
|
||||
nr, nmi, data, regs);
|
||||
rcu_read_lock();
|
||||
/*
|
||||
* doesn't really matter which of the child contexts the
|
||||
@@ -3742,7 +3777,7 @@ static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
|
||||
*/
|
||||
ctx = rcu_dereference(current->perf_counter_ctxp);
|
||||
if (ctx)
|
||||
perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
|
||||
perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data, regs);
|
||||
rcu_read_unlock();
|
||||
|
||||
barrier();
|
||||
@@ -3756,11 +3791,11 @@ void __perf_swcounter_event(u32 event, u64 nr, int nmi,
|
||||
struct pt_regs *regs, u64 addr)
|
||||
{
|
||||
struct perf_sample_data data = {
|
||||
.regs = regs,
|
||||
.addr = addr,
|
||||
};
|
||||
|
||||
do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
|
||||
do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi,
|
||||
&data, regs);
|
||||
}
|
||||
|
||||
static void perf_swcounter_read(struct perf_counter *counter)
|
||||
@@ -3797,6 +3832,7 @@ static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
|
||||
{
|
||||
enum hrtimer_restart ret = HRTIMER_RESTART;
|
||||
struct perf_sample_data data;
|
||||
struct pt_regs *regs;
|
||||
struct perf_counter *counter;
|
||||
u64 period;
|
||||
|
||||
@@ -3804,17 +3840,17 @@ static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
|
||||
counter->pmu->read(counter);
|
||||
|
||||
data.addr = 0;
|
||||
data.regs = get_irq_regs();
|
||||
regs = get_irq_regs();
|
||||
/*
|
||||
* In case we exclude kernel IPs or are somehow not in interrupt
|
||||
* context, provide the next best thing, the user IP.
|
||||
*/
|
||||
if ((counter->attr.exclude_kernel || !data.regs) &&
|
||||
if ((counter->attr.exclude_kernel || !regs) &&
|
||||
!counter->attr.exclude_user)
|
||||
data.regs = task_pt_regs(current);
|
||||
regs = task_pt_regs(current);
|
||||
|
||||
if (data.regs) {
|
||||
if (perf_counter_overflow(counter, 0, &data))
|
||||
if (regs) {
|
||||
if (perf_counter_overflow(counter, 0, &data, regs))
|
||||
ret = HRTIMER_NORESTART;
|
||||
}
|
||||
|
||||
@@ -3950,15 +3986,17 @@ void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
|
||||
};
|
||||
|
||||
struct perf_sample_data data = {
|
||||
.regs = get_irq_regs(),
|
||||
.addr = addr,
|
||||
.raw = &raw,
|
||||
};
|
||||
|
||||
if (!data.regs)
|
||||
data.regs = task_pt_regs(current);
|
||||
struct pt_regs *regs = get_irq_regs();
|
||||
|
||||
do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
|
||||
if (!regs)
|
||||
regs = task_pt_regs(current);
|
||||
|
||||
do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
|
||||
&data, regs);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
|
||||
|
||||
@@ -4170,8 +4208,8 @@ done:
|
||||
static int perf_copy_attr(struct perf_counter_attr __user *uattr,
|
||||
struct perf_counter_attr *attr)
|
||||
{
|
||||
int ret;
|
||||
u32 size;
|
||||
int ret;
|
||||
|
||||
if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
|
||||
return -EFAULT;
|
||||
@@ -4196,19 +4234,19 @@ static int perf_copy_attr(struct perf_counter_attr __user *uattr,
|
||||
|
||||
/*
|
||||
* If we're handed a bigger struct than we know of,
|
||||
* ensure all the unknown bits are 0.
|
||||
* ensure all the unknown bits are 0 - i.e. new
|
||||
* user-space does not rely on any kernel feature
|
||||
* extensions we dont know about yet.
|
||||
*/
|
||||
if (size > sizeof(*attr)) {
|
||||
unsigned long val;
|
||||
unsigned long __user *addr;
|
||||
unsigned long __user *end;
|
||||
unsigned char __user *addr;
|
||||
unsigned char __user *end;
|
||||
unsigned char val;
|
||||
|
||||
addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
|
||||
sizeof(unsigned long));
|
||||
end = PTR_ALIGN((void __user *)uattr + size,
|
||||
sizeof(unsigned long));
|
||||
addr = (void __user *)uattr + sizeof(*attr);
|
||||
end = (void __user *)uattr + size;
|
||||
|
||||
for (; addr < end; addr += sizeof(unsigned long)) {
|
||||
for (; addr < end; addr++) {
|
||||
ret = get_user(val, addr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
@@ -48,13 +48,6 @@ static __read_mostly int sched_clock_running;
|
||||
__read_mostly int sched_clock_stable;
|
||||
|
||||
struct sched_clock_data {
|
||||
/*
|
||||
* Raw spinlock - this is a special case: this might be called
|
||||
* from within instrumentation code so we dont want to do any
|
||||
* instrumentation ourselves.
|
||||
*/
|
||||
raw_spinlock_t lock;
|
||||
|
||||
u64 tick_raw;
|
||||
u64 tick_gtod;
|
||||
u64 clock;
|
||||
@@ -80,7 +73,6 @@ void sched_clock_init(void)
|
||||
for_each_possible_cpu(cpu) {
|
||||
struct sched_clock_data *scd = cpu_sdc(cpu);
|
||||
|
||||
scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
|
||||
scd->tick_raw = 0;
|
||||
scd->tick_gtod = ktime_now;
|
||||
scd->clock = ktime_now;
|
||||
@@ -109,14 +101,19 @@ static inline u64 wrap_max(u64 x, u64 y)
|
||||
* - filter out backward motion
|
||||
* - use the GTOD tick value to create a window to filter crazy TSC values
|
||||
*/
|
||||
static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
|
||||
static u64 sched_clock_local(struct sched_clock_data *scd)
|
||||
{
|
||||
s64 delta = now - scd->tick_raw;
|
||||
u64 clock, min_clock, max_clock;
|
||||
u64 now, clock, old_clock, min_clock, max_clock;
|
||||
s64 delta;
|
||||
|
||||
again:
|
||||
now = sched_clock();
|
||||
delta = now - scd->tick_raw;
|
||||
if (unlikely(delta < 0))
|
||||
delta = 0;
|
||||
|
||||
old_clock = scd->clock;
|
||||
|
||||
/*
|
||||
* scd->clock = clamp(scd->tick_gtod + delta,
|
||||
* max(scd->tick_gtod, scd->clock),
|
||||
@@ -124,84 +121,73 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
|
||||
*/
|
||||
|
||||
clock = scd->tick_gtod + delta;
|
||||
min_clock = wrap_max(scd->tick_gtod, scd->clock);
|
||||
max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC);
|
||||
min_clock = wrap_max(scd->tick_gtod, old_clock);
|
||||
max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
|
||||
|
||||
clock = wrap_max(clock, min_clock);
|
||||
clock = wrap_min(clock, max_clock);
|
||||
|
||||
scd->clock = clock;
|
||||
if (cmpxchg(&scd->clock, old_clock, clock) != old_clock)
|
||||
goto again;
|
||||
|
||||
return scd->clock;
|
||||
return clock;
|
||||
}
|
||||
|
||||
static void lock_double_clock(struct sched_clock_data *data1,
|
||||
struct sched_clock_data *data2)
|
||||
static u64 sched_clock_remote(struct sched_clock_data *scd)
|
||||
{
|
||||
if (data1 < data2) {
|
||||
__raw_spin_lock(&data1->lock);
|
||||
__raw_spin_lock(&data2->lock);
|
||||
struct sched_clock_data *my_scd = this_scd();
|
||||
u64 this_clock, remote_clock;
|
||||
u64 *ptr, old_val, val;
|
||||
|
||||
sched_clock_local(my_scd);
|
||||
again:
|
||||
this_clock = my_scd->clock;
|
||||
remote_clock = scd->clock;
|
||||
|
||||
/*
|
||||
* Use the opportunity that we have both locks
|
||||
* taken to couple the two clocks: we take the
|
||||
* larger time as the latest time for both
|
||||
* runqueues. (this creates monotonic movement)
|
||||
*/
|
||||
if (likely((s64)(remote_clock - this_clock) < 0)) {
|
||||
ptr = &scd->clock;
|
||||
old_val = remote_clock;
|
||||
val = this_clock;
|
||||
} else {
|
||||
__raw_spin_lock(&data2->lock);
|
||||
__raw_spin_lock(&data1->lock);
|
||||
/*
|
||||
* Should be rare, but possible:
|
||||
*/
|
||||
ptr = &my_scd->clock;
|
||||
old_val = this_clock;
|
||||
val = remote_clock;
|
||||
}
|
||||
|
||||
if (cmpxchg(ptr, old_val, val) != old_val)
|
||||
goto again;
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
u64 sched_clock_cpu(int cpu)
|
||||
{
|
||||
u64 now, clock, this_clock, remote_clock;
|
||||
struct sched_clock_data *scd;
|
||||
u64 clock;
|
||||
|
||||
WARN_ON_ONCE(!irqs_disabled());
|
||||
|
||||
if (sched_clock_stable)
|
||||
return sched_clock();
|
||||
|
||||
scd = cpu_sdc(cpu);
|
||||
|
||||
/*
|
||||
* Normally this is not called in NMI context - but if it is,
|
||||
* trying to do any locking here is totally lethal.
|
||||
*/
|
||||
if (unlikely(in_nmi()))
|
||||
return scd->clock;
|
||||
|
||||
if (unlikely(!sched_clock_running))
|
||||
return 0ull;
|
||||
|
||||
WARN_ON_ONCE(!irqs_disabled());
|
||||
now = sched_clock();
|
||||
scd = cpu_sdc(cpu);
|
||||
|
||||
if (cpu != raw_smp_processor_id()) {
|
||||
struct sched_clock_data *my_scd = this_scd();
|
||||
|
||||
lock_double_clock(scd, my_scd);
|
||||
|
||||
this_clock = __update_sched_clock(my_scd, now);
|
||||
remote_clock = scd->clock;
|
||||
|
||||
/*
|
||||
* Use the opportunity that we have both locks
|
||||
* taken to couple the two clocks: we take the
|
||||
* larger time as the latest time for both
|
||||
* runqueues. (this creates monotonic movement)
|
||||
*/
|
||||
if (likely((s64)(remote_clock - this_clock) < 0)) {
|
||||
clock = this_clock;
|
||||
scd->clock = clock;
|
||||
} else {
|
||||
/*
|
||||
* Should be rare, but possible:
|
||||
*/
|
||||
clock = remote_clock;
|
||||
my_scd->clock = remote_clock;
|
||||
}
|
||||
|
||||
__raw_spin_unlock(&my_scd->lock);
|
||||
} else {
|
||||
__raw_spin_lock(&scd->lock);
|
||||
clock = __update_sched_clock(scd, now);
|
||||
}
|
||||
|
||||
__raw_spin_unlock(&scd->lock);
|
||||
if (cpu != smp_processor_id())
|
||||
clock = sched_clock_remote(scd);
|
||||
else
|
||||
clock = sched_clock_local(scd);
|
||||
|
||||
return clock;
|
||||
}
|
||||
@@ -223,11 +209,9 @@ void sched_clock_tick(void)
|
||||
now_gtod = ktime_to_ns(ktime_get());
|
||||
now = sched_clock();
|
||||
|
||||
__raw_spin_lock(&scd->lock);
|
||||
scd->tick_raw = now;
|
||||
scd->tick_gtod = now_gtod;
|
||||
__update_sched_clock(scd, now);
|
||||
__raw_spin_unlock(&scd->lock);
|
||||
sched_clock_local(scd);
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
@@ -513,6 +513,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
|
||||
if (entity_is_task(curr)) {
|
||||
struct task_struct *curtask = task_of(curr);
|
||||
|
||||
trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
|
||||
cpuacct_charge(curtask, delta_exec);
|
||||
account_group_exec_runtime(curtask, delta_exec);
|
||||
}
|
||||
|
||||
@@ -42,7 +42,6 @@ obj-$(CONFIG_BOOT_TRACER) += trace_boot.o
|
||||
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o
|
||||
obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o
|
||||
obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o
|
||||
obj-$(CONFIG_POWER_TRACER) += trace_power.o
|
||||
obj-$(CONFIG_KMEMTRACE) += kmemtrace.o
|
||||
obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o
|
||||
obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o
|
||||
@@ -54,5 +53,6 @@ obj-$(CONFIG_EVENT_TRACING) += trace_export.o
|
||||
obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o
|
||||
obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o
|
||||
obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o
|
||||
obj-$(CONFIG_EVENT_TRACING) += power-traces.o
|
||||
|
||||
libftrace-y := ftrace.o
|
||||
|
||||
20
kernel/trace/power-traces.c
Normal file
20
kernel/trace/power-traces.c
Normal file
@@ -0,0 +1,20 @@
|
||||
/*
|
||||
* Power trace points
|
||||
*
|
||||
* Copyright (C) 2009 Arjan van de Ven <arjan@linux.intel.com>
|
||||
*/
|
||||
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#define CREATE_TRACE_POINTS
|
||||
#include <trace/events/power.h>
|
||||
|
||||
EXPORT_TRACEPOINT_SYMBOL_GPL(power_start);
|
||||
EXPORT_TRACEPOINT_SYMBOL_GPL(power_end);
|
||||
EXPORT_TRACEPOINT_SYMBOL_GPL(power_frequency);
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
#include <linux/ftrace.h>
|
||||
#include <trace/boot.h>
|
||||
#include <linux/kmemtrace.h>
|
||||
#include <trace/power.h>
|
||||
|
||||
#include <linux/trace_seq.h>
|
||||
#include <linux/ftrace_event.h>
|
||||
@@ -37,7 +36,6 @@ enum trace_type {
|
||||
TRACE_HW_BRANCHES,
|
||||
TRACE_KMEM_ALLOC,
|
||||
TRACE_KMEM_FREE,
|
||||
TRACE_POWER,
|
||||
TRACE_BLK,
|
||||
|
||||
__TRACE_LAST_TYPE,
|
||||
@@ -207,7 +205,6 @@ extern void __ftrace_bad_type(void);
|
||||
IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \
|
||||
TRACE_GRAPH_RET); \
|
||||
IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\
|
||||
IF_ASSIGN(var, ent, struct trace_power, TRACE_POWER); \
|
||||
IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \
|
||||
TRACE_KMEM_ALLOC); \
|
||||
IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \
|
||||
|
||||
@@ -330,23 +330,6 @@ FTRACE_ENTRY(hw_branch, hw_branch_entry,
|
||||
F_printk("from: %llx to: %llx", __entry->from, __entry->to)
|
||||
);
|
||||
|
||||
FTRACE_ENTRY(power, trace_power,
|
||||
|
||||
TRACE_POWER,
|
||||
|
||||
F_STRUCT(
|
||||
__field_struct( struct power_trace, state_data )
|
||||
__field_desc( s64, state_data, stamp )
|
||||
__field_desc( s64, state_data, end )
|
||||
__field_desc( int, state_data, type )
|
||||
__field_desc( int, state_data, state )
|
||||
),
|
||||
|
||||
F_printk("%llx->%llx type:%u state:%u",
|
||||
__entry->stamp, __entry->end,
|
||||
__entry->type, __entry->state)
|
||||
);
|
||||
|
||||
FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry,
|
||||
|
||||
TRACE_KMEM_ALLOC,
|
||||
|
||||
@@ -1,218 +0,0 @@
|
||||
/*
|
||||
* ring buffer based C-state tracer
|
||||
*
|
||||
* Arjan van de Ven <arjan@linux.intel.com>
|
||||
* Copyright (C) 2008 Intel Corporation
|
||||
*
|
||||
* Much is borrowed from trace_boot.c which is
|
||||
* Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com>
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/debugfs.h>
|
||||
#include <trace/power.h>
|
||||
#include <linux/kallsyms.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
#include "trace.h"
|
||||
#include "trace_output.h"
|
||||
|
||||
static struct trace_array *power_trace;
|
||||
static int __read_mostly trace_power_enabled;
|
||||
|
||||
static void probe_power_start(struct power_trace *it, unsigned int type,
|
||||
unsigned int level)
|
||||
{
|
||||
if (!trace_power_enabled)
|
||||
return;
|
||||
|
||||
memset(it, 0, sizeof(struct power_trace));
|
||||
it->state = level;
|
||||
it->type = type;
|
||||
it->stamp = ktime_get();
|
||||
}
|
||||
|
||||
|
||||
static void probe_power_end(struct power_trace *it)
|
||||
{
|
||||
struct ftrace_event_call *call = &event_power;
|
||||
struct ring_buffer_event *event;
|
||||
struct ring_buffer *buffer;
|
||||
struct trace_power *entry;
|
||||
struct trace_array_cpu *data;
|
||||
struct trace_array *tr = power_trace;
|
||||
|
||||
if (!trace_power_enabled)
|
||||
return;
|
||||
|
||||
buffer = tr->buffer;
|
||||
|
||||
preempt_disable();
|
||||
it->end = ktime_get();
|
||||
data = tr->data[smp_processor_id()];
|
||||
|
||||
event = trace_buffer_lock_reserve(buffer, TRACE_POWER,
|
||||
sizeof(*entry), 0, 0);
|
||||
if (!event)
|
||||
goto out;
|
||||
entry = ring_buffer_event_data(event);
|
||||
entry->state_data = *it;
|
||||
if (!filter_check_discard(call, entry, buffer, event))
|
||||
trace_buffer_unlock_commit(buffer, event, 0, 0);
|
||||
out:
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
static void probe_power_mark(struct power_trace *it, unsigned int type,
|
||||
unsigned int level)
|
||||
{
|
||||
struct ftrace_event_call *call = &event_power;
|
||||
struct ring_buffer_event *event;
|
||||
struct ring_buffer *buffer;
|
||||
struct trace_power *entry;
|
||||
struct trace_array_cpu *data;
|
||||
struct trace_array *tr = power_trace;
|
||||
|
||||
if (!trace_power_enabled)
|
||||
return;
|
||||
|
||||
buffer = tr->buffer;
|
||||
|
||||
memset(it, 0, sizeof(struct power_trace));
|
||||
it->state = level;
|
||||
it->type = type;
|
||||
it->stamp = ktime_get();
|
||||
preempt_disable();
|
||||
it->end = it->stamp;
|
||||
data = tr->data[smp_processor_id()];
|
||||
|
||||
event = trace_buffer_lock_reserve(buffer, TRACE_POWER,
|
||||
sizeof(*entry), 0, 0);
|
||||
if (!event)
|
||||
goto out;
|
||||
entry = ring_buffer_event_data(event);
|
||||
entry->state_data = *it;
|
||||
if (!filter_check_discard(call, entry, buffer, event))
|
||||
trace_buffer_unlock_commit(buffer, event, 0, 0);
|
||||
out:
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
static int tracing_power_register(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = register_trace_power_start(probe_power_start);
|
||||
if (ret) {
|
||||
pr_info("power trace: Couldn't activate tracepoint"
|
||||
" probe to trace_power_start\n");
|
||||
return ret;
|
||||
}
|
||||
ret = register_trace_power_end(probe_power_end);
|
||||
if (ret) {
|
||||
pr_info("power trace: Couldn't activate tracepoint"
|
||||
" probe to trace_power_end\n");
|
||||
goto fail_start;
|
||||
}
|
||||
ret = register_trace_power_mark(probe_power_mark);
|
||||
if (ret) {
|
||||
pr_info("power trace: Couldn't activate tracepoint"
|
||||
" probe to trace_power_mark\n");
|
||||
goto fail_end;
|
||||
}
|
||||
return ret;
|
||||
fail_end:
|
||||
unregister_trace_power_end(probe_power_end);
|
||||
fail_start:
|
||||
unregister_trace_power_start(probe_power_start);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void start_power_trace(struct trace_array *tr)
|
||||
{
|
||||
trace_power_enabled = 1;
|
||||
}
|
||||
|
||||
static void stop_power_trace(struct trace_array *tr)
|
||||
{
|
||||
trace_power_enabled = 0;
|
||||
}
|
||||
|
||||
static void power_trace_reset(struct trace_array *tr)
|
||||
{
|
||||
trace_power_enabled = 0;
|
||||
unregister_trace_power_start(probe_power_start);
|
||||
unregister_trace_power_end(probe_power_end);
|
||||
unregister_trace_power_mark(probe_power_mark);
|
||||
}
|
||||
|
||||
|
||||
static int power_trace_init(struct trace_array *tr)
|
||||
{
|
||||
power_trace = tr;
|
||||
|
||||
trace_power_enabled = 1;
|
||||
tracing_power_register();
|
||||
|
||||
tracing_reset_online_cpus(tr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static enum print_line_t power_print_line(struct trace_iterator *iter)
|
||||
{
|
||||
int ret = 0;
|
||||
struct trace_entry *entry = iter->ent;
|
||||
struct trace_power *field ;
|
||||
struct power_trace *it;
|
||||
struct trace_seq *s = &iter->seq;
|
||||
struct timespec stamp;
|
||||
struct timespec duration;
|
||||
|
||||
trace_assign_type(field, entry);
|
||||
it = &field->state_data;
|
||||
stamp = ktime_to_timespec(it->stamp);
|
||||
duration = ktime_to_timespec(ktime_sub(it->end, it->stamp));
|
||||
|
||||
if (entry->type == TRACE_POWER) {
|
||||
if (it->type == POWER_CSTATE)
|
||||
ret = trace_seq_printf(s, "[%5ld.%09ld] CSTATE: Going to C%i on cpu %i for %ld.%09ld\n",
|
||||
stamp.tv_sec,
|
||||
stamp.tv_nsec,
|
||||
it->state, iter->cpu,
|
||||
duration.tv_sec,
|
||||
duration.tv_nsec);
|
||||
if (it->type == POWER_PSTATE)
|
||||
ret = trace_seq_printf(s, "[%5ld.%09ld] PSTATE: Going to P%i on cpu %i\n",
|
||||
stamp.tv_sec,
|
||||
stamp.tv_nsec,
|
||||
it->state, iter->cpu);
|
||||
if (!ret)
|
||||
return TRACE_TYPE_PARTIAL_LINE;
|
||||
return TRACE_TYPE_HANDLED;
|
||||
}
|
||||
return TRACE_TYPE_UNHANDLED;
|
||||
}
|
||||
|
||||
static void power_print_header(struct seq_file *s)
|
||||
{
|
||||
seq_puts(s, "# TIMESTAMP STATE EVENT\n");
|
||||
seq_puts(s, "# | | |\n");
|
||||
}
|
||||
|
||||
static struct tracer power_tracer __read_mostly =
|
||||
{
|
||||
.name = "power",
|
||||
.init = power_trace_init,
|
||||
.start = start_power_trace,
|
||||
.stop = stop_power_trace,
|
||||
.reset = power_trace_reset,
|
||||
.print_line = power_print_line,
|
||||
.print_header = power_print_header,
|
||||
};
|
||||
|
||||
static int init_power_trace(void)
|
||||
{
|
||||
return register_tracer(&power_tracer);
|
||||
}
|
||||
device_initcall(init_power_trace);
|
||||
Reference in New Issue
Block a user