dt-bindings: Add devicetree bindings

Add snapshot of device tree bindings from keystone common kernel, branch
"android-mainline-keystone-qcom-release" at c4c12103f9c0 ("Snap for 9228065
from e32903b9a63bb558df8b803b076619c53c16baad to
android-mainline-keystone-qcom-release").

Change-Id: I7682079615cbd9f29340a5c1f2a1d84ec441a1f1
Signed-off-by: Melody Olvera <quic_molvera@quicinc.com>
This commit is contained in:
Melody Olvera
2023-04-03 14:38:11 -07:00
parent c334acf377
commit 6f18ce8026
4878 changed files with 424312 additions and 0 deletions

View File

@@ -0,0 +1,19 @@
* Broadcom Digital Timing Engine(DTE) based PTP clock
Required properties:
- compatible: should contain the core compatibility string
and the SoC compatibility string. The SoC
compatibility string is to handle SoC specific
hardware differences.
Core compatibility string:
"brcm,ptp-dte"
SoC compatibility strings:
"brcm,iproc-ptp-dte" - for iproc based SoC's
- reg: address and length of the DTE block's NCO registers
Example:
ptp: ptp-dte@180af650 {
compatible = "brcm,iproc-ptp-dte", "brcm,ptp-dte";
reg = <0x180af650 0x10>;
};

View File

@@ -0,0 +1,45 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/ptp/ptp-idt82p33.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: IDT 82P33 PTP Clock
description: |
IDT 82P33XXX Synchronization Management Unit (SMU) based PTP clock
maintainers:
- Min Li <min.li.xe@renesas.com>
properties:
compatible:
enum:
- idt,82p33810
- idt,82p33813
- idt,82p33814
- idt,82p33831
- idt,82p33910
- idt,82p33913
- idt,82p33914
- idt,82p33931
reg:
maxItems: 1
required:
- compatible
- reg
additionalProperties: false
examples:
- |
i2c {
#address-cells = <1>;
#size-cells = <0>;
phc@51 {
compatible = "idt,82p33810";
reg = <0x51>;
};
};

View File

@@ -0,0 +1,69 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/ptp/ptp-idtcm.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: IDT ClockMatrix (TM) PTP Clock
maintainers:
- Vincent Cheng <vincent.cheng.xh@renesas.com>
properties:
compatible:
enum:
# For System Synchronizer
- idt,8a34000
- idt,8a34001
- idt,8a34002
- idt,8a34003
- idt,8a34004
- idt,8a34005
- idt,8a34006
- idt,8a34007
- idt,8a34008
- idt,8a34009
# For Port Synchronizer
- idt,8a34010
- idt,8a34011
- idt,8a34012
- idt,8a34013
- idt,8a34014
- idt,8a34015
- idt,8a34016
- idt,8a34017
- idt,8a34018
- idt,8a34019
# For Universal Frequency Translator (UFT)
- idt,8a34040
- idt,8a34041
- idt,8a34042
- idt,8a34043
- idt,8a34044
- idt,8a34045
- idt,8a34046
- idt,8a34047
- idt,8a34048
- idt,8a34049
reg:
maxItems: 1
description:
I2C slave address of the device.
required:
- compatible
- reg
additionalProperties: false
examples:
- |
i2c {
#address-cells = <1>;
#size-cells = <0>;
phc@5b {
compatible = "idt,8a34000";
reg = <0x5b>;
};
};

35
bindings/ptp/ptp-ines.txt Normal file
View File

@@ -0,0 +1,35 @@
ZHAW InES PTP time stamping IP core
The IP core needs two different kinds of nodes. The control node
lives somewhere in the memory map and specifies the address of the
control registers. There can be up to three port handles placed as
attributes of PHY nodes. These associate a particular MII bus with a
port index within the IP core.
Required properties of the control node:
- compatible: "ines,ptp-ctrl"
- reg: physical address and size of the register bank
Required format of the port handle within the PHY node:
- timestamper: provides control node reference and
the port channel within the IP core
Example:
tstamper: timestamper@60000000 {
compatible = "ines,ptp-ctrl";
reg = <0x60000000 0x80>;
};
ethernet@80000000 {
...
mdio {
...
ethernet-phy@3 {
...
timestamper = <&tstamper 0>;
};
};
};

View File

@@ -0,0 +1,87 @@
* Freescale QorIQ 1588 timer based PTP clock
General Properties:
- compatible Should be "fsl,etsec-ptp" for eTSEC
Should be "fsl,fman-ptp-timer" for DPAA FMan
Should be "fsl,dpaa2-ptp" for DPAA2
Should be "fsl,enetc-ptp" for ENETC
- reg Offset and length of the register set for the device
- interrupts There should be at least two interrupts. Some devices
have as many as four PTP related interrupts.
Clock Properties:
- fsl,cksel Timer reference clock source.
- fsl,tclk-period Timer reference clock period in nanoseconds.
- fsl,tmr-prsc Prescaler, divides the output clock.
- fsl,tmr-add Frequency compensation value.
- fsl,tmr-fiper1 Fixed interval period pulse generator.
- fsl,tmr-fiper2 Fixed interval period pulse generator.
- fsl,tmr-fiper3 Fixed interval period pulse generator.
Supported only on DPAA2 and ENETC hardware.
- fsl,max-adj Maximum frequency adjustment in parts per billion.
- fsl,extts-fifo The presence of this property indicates hardware
support for the external trigger stamp FIFO.
- little-endian The presence of this property indicates the 1588 timer
IP block is little-endian mode. The default endian mode
is big-endian.
These properties set the operational parameters for the PTP
clock. You must choose these carefully for the clock to work right.
Here is how to figure good values:
TimerOsc = selected reference clock MHz
tclk_period = desired clock period nanoseconds
NominalFreq = 1000 / tclk_period MHz
FreqDivRatio = TimerOsc / NominalFreq (must be greater that 1.0)
tmr_add = ceil(2^32 / FreqDivRatio)
OutputClock = NominalFreq / tmr_prsc MHz
PulseWidth = 1 / OutputClock microseconds
FiperFreq1 = desired frequency in Hz
FiperDiv1 = 1000000 * OutputClock / FiperFreq1
tmr_fiper1 = tmr_prsc * tclk_period * FiperDiv1 - tclk_period
max_adj = 1000000000 * (FreqDivRatio - 1.0) - 1
The calculation for tmr_fiper2 is the same as for tmr_fiper1. The
driver expects that tmr_fiper1 will be correctly set to produce a 1
Pulse Per Second (PPS) signal, since this will be offered to the PPS
subsystem to synchronize the Linux clock.
Reference clock source is determined by the value, which is holded
in CKSEL bits in TMR_CTRL register. "fsl,cksel" property keeps the
value, which will be directly written in those bits, that is why,
according to reference manual, the next clock sources can be used:
For eTSEC,
<0> - external high precision timer reference clock (TSEC_TMR_CLK
input is used for this purpose);
<1> - eTSEC system clock;
<2> - eTSEC1 transmit clock;
<3> - RTC clock input.
For DPAA FMan,
<0> - external high precision timer reference clock (TMR_1588_CLK)
<1> - MAC system clock (1/2 FMan clock)
<2> - reserved
<3> - RTC clock oscillator
When this attribute is not used, the IEEE 1588 timer reference clock
will use the eTSEC system clock (for Gianfar) or the MAC system
clock (for DPAA).
Example:
ptp_clock@24e00 {
compatible = "fsl,etsec-ptp";
reg = <0x24E00 0xB0>;
interrupts = <12 0x8 13 0x8>;
interrupt-parent = < &ipic >;
fsl,cksel = <1>;
fsl,tclk-period = <10>;
fsl,tmr-prsc = <100>;
fsl,tmr-add = <0x999999A4>;
fsl,tmr-fiper1 = <0x3B9AC9F6>;
fsl,tmr-fiper2 = <0x00018696>;
fsl,max-adj = <659999998>;
};

View File

@@ -0,0 +1,42 @@
Time stamps from MII bus snooping devices
This binding supports non-PHY devices that snoop the MII bus and
provide time stamps. In contrast to PHY time stamping drivers (which
can simply attach their interface directly to the PHY instance), stand
alone MII time stamping drivers use this binding to specify the
connection between the snooping device and a given network interface.
Non-PHY MII time stamping drivers typically talk to the control
interface over another bus like I2C, SPI, UART, or via a memory mapped
peripheral. This controller device is associated with one or more
time stamping channels, each of which snoops on a MII bus.
The "timestamper" property lives in a phy node and links a time
stamping channel from the controller device to that phy's MII bus.
Example:
tstamper: timestamper@10000000 {
compatible = "ines,ptp-ctrl";
reg = <0x10000000 0x80>;
};
ethernet@20000000 {
mdio {
ethernet-phy@1 {
timestamper = <&tstamper 0>;
};
};
};
ethernet@30000000 {
mdio {
ethernet-phy@2 {
timestamper = <&tstamper 1>;
};
};
};
In this example, time stamps from the MII bus attached to phy@1 will
appear on time stamp channel 0 (zero), and those from phy@2 appear on
channel 1.