dt-bindings: Add devicetree bindings

Add snapshot of device tree bindings from keystone common kernel, branch
"android-mainline-keystone-qcom-release" at c4c12103f9c0 ("Snap for 9228065
from e32903b9a63bb558df8b803b076619c53c16baad to
android-mainline-keystone-qcom-release").

Change-Id: I7682079615cbd9f29340a5c1f2a1d84ec441a1f1
Signed-off-by: Melody Olvera <quic_molvera@quicinc.com>
This commit is contained in:
Melody Olvera
2023-04-03 14:38:11 -07:00
parent c334acf377
commit 6f18ce8026
4878 changed files with 424312 additions and 0 deletions

View File

@@ -0,0 +1,135 @@
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/allwinner,sun50i-h6-operating-points.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Allwinner H6 CPU OPP
maintainers:
- Chen-Yu Tsai <wens@csie.org>
- Maxime Ripard <mripard@kernel.org>
description: |
For some SoCs, the CPU frequency subset and voltage value of each
OPP varies based on the silicon variant in use. Allwinner Process
Voltage Scaling Tables defines the voltage and frequency value based
on the speedbin blown in the efuse combination. The
sun50i-cpufreq-nvmem driver reads the efuse value from the SoC to
provide the OPP framework with required information.
allOf:
- $ref: opp-v2-base.yaml#
properties:
compatible:
const: allwinner,sun50i-h6-operating-points
nvmem-cells:
description: |
A phandle pointing to a nvmem-cells node representing the efuse
registers that has information about the speedbin that is used
to select the right frequency/voltage value pair. Please refer
the for nvmem-cells bindings
Documentation/devicetree/bindings/nvmem/nvmem.txt and also
examples below.
opp-shared: true
required:
- compatible
- nvmem-cells
patternProperties:
"opp-[0-9]+":
type: object
properties:
opp-hz: true
clock-latency-ns: true
patternProperties:
"opp-microvolt-.*": true
required:
- opp-hz
- opp-microvolt-speed0
- opp-microvolt-speed1
- opp-microvolt-speed2
unevaluatedProperties: false
additionalProperties: false
examples:
- |
cpu_opp_table: opp-table {
compatible = "allwinner,sun50i-h6-operating-points";
nvmem-cells = <&speedbin_efuse>;
opp-shared;
opp-480000000 {
clock-latency-ns = <244144>; /* 8 32k periods */
opp-hz = /bits/ 64 <480000000>;
opp-microvolt-speed0 = <880000>;
opp-microvolt-speed1 = <820000>;
opp-microvolt-speed2 = <800000>;
};
opp-720000000 {
clock-latency-ns = <244144>; /* 8 32k periods */
opp-hz = /bits/ 64 <720000000>;
opp-microvolt-speed0 = <880000>;
opp-microvolt-speed1 = <820000>;
opp-microvolt-speed2 = <800000>;
};
opp-816000000 {
clock-latency-ns = <244144>; /* 8 32k periods */
opp-hz = /bits/ 64 <816000000>;
opp-microvolt-speed0 = <880000>;
opp-microvolt-speed1 = <820000>;
opp-microvolt-speed2 = <800000>;
};
opp-888000000 {
clock-latency-ns = <244144>; /* 8 32k periods */
opp-hz = /bits/ 64 <888000000>;
opp-microvolt-speed0 = <940000>;
opp-microvolt-speed1 = <820000>;
opp-microvolt-speed2 = <800000>;
};
opp-1080000000 {
clock-latency-ns = <244144>; /* 8 32k periods */
opp-hz = /bits/ 64 <1080000000>;
opp-microvolt-speed0 = <1060000>;
opp-microvolt-speed1 = <880000>;
opp-microvolt-speed2 = <840000>;
};
opp-1320000000 {
clock-latency-ns = <244144>; /* 8 32k periods */
opp-hz = /bits/ 64 <1320000000>;
opp-microvolt-speed0 = <1160000>;
opp-microvolt-speed1 = <940000>;
opp-microvolt-speed2 = <900000>;
};
opp-1488000000 {
clock-latency-ns = <244144>; /* 8 32k periods */
opp-hz = /bits/ 64 <1488000000>;
opp-microvolt-speed0 = <1160000>;
opp-microvolt-speed1 = <1000000>;
opp-microvolt-speed2 = <960000>;
};
};
...

51
bindings/opp/opp-v1.yaml Normal file
View File

@@ -0,0 +1,51 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/opp-v1.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Generic OPP (Operating Performance Points) v1 Bindings
maintainers:
- Viresh Kumar <viresh.kumar@linaro.org>
description: |+
Devices work at voltage-current-frequency combinations and some implementations
have the liberty of choosing these. These combinations are called Operating
Performance Points aka OPPs. This document defines bindings for these OPPs
applicable across wide range of devices. For illustration purpose, this document
uses CPU as a device.
This binding only supports voltage-frequency pairs.
select: true
properties:
operating-points:
$ref: /schemas/types.yaml#/definitions/uint32-matrix
items:
items:
- description: Frequency in kHz
- description: Voltage for OPP in uV
additionalProperties: true
examples:
- |
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <0>;
next-level-cache = <&L2>;
operating-points =
/* kHz uV */
<792000 1100000>,
<396000 950000>,
<198000 850000>;
};
};
...

View File

@@ -0,0 +1,249 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/opp-v2-base.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Generic OPP (Operating Performance Points) Common Binding
maintainers:
- Viresh Kumar <viresh.kumar@linaro.org>
description: |
Devices work at voltage-current-frequency combinations and some implementations
have the liberty of choosing these. These combinations are called Operating
Performance Points aka OPPs. This document defines bindings for these OPPs
applicable across wide range of devices. For illustration purpose, this document
uses CPU as a device.
This describes the OPPs belonging to a device.
select: false
properties:
$nodename:
pattern: '^opp-table(-[a-z0-9]+)?$'
opp-shared:
description:
Indicates that device nodes using this OPP Table Node's phandle switch
their DVFS state together, i.e. they share clock/voltage/current lines.
Missing property means devices have independent clock/voltage/current
lines, but they share OPP tables.
type: boolean
patternProperties:
'^opp(-?[0-9]+)*$':
type: object
description:
One or more OPP nodes describing voltage-current-frequency combinations.
Their name isn't significant but their phandle can be used to reference an
OPP. These are mandatory except for the case where the OPP table is
present only to indicate dependency between devices using the opp-shared
property.
properties:
opp-hz:
description:
Frequency in Hz, expressed as a 64-bit big-endian integer. This is a
required property for all device nodes, unless another "required"
property to uniquely identify the OPP nodes exists. Devices like power
domains must have another (implementation dependent) property.
Entries for multiple clocks shall be provided in the same field, as
array of frequencies. The OPP binding doesn't provide any provisions
to relate the values to their clocks or the order in which the clocks
need to be configured and that is left for the implementation
specific binding.
minItems: 1
maxItems: 16
items:
maxItems: 1
opp-microvolt:
description: |
Voltage for the OPP
A single regulator's voltage is specified with an array of size one or three.
Single entry is for target voltage and three entries are for <target min max>
voltages.
Entries for multiple regulators shall be provided in the same field separated
by angular brackets <>. The OPP binding doesn't provide any provisions to
relate the values to their power supplies or the order in which the supplies
need to be configured and that is left for the implementation specific
binding.
Entries for all regulators shall be of the same size, i.e. either all use a
single value or triplets.
minItems: 1
maxItems: 8 # Should be enough regulators
items:
minItems: 1
maxItems: 3
opp-microamp:
description: |
The maximum current drawn by the device in microamperes considering
system specific parameters (such as transients, process, aging,
maximum operating temperature range etc.) as necessary. This may be
used to set the most efficient regulator operating mode.
Should only be set if opp-microvolt or opp-microvolt-<name> is set for
the OPP.
Entries for multiple regulators shall be provided in the same field
separated by angular brackets <>. If current values aren't required
for a regulator, then it shall be filled with 0. If current values
aren't required for any of the regulators, then this field is not
required. The OPP binding doesn't provide any provisions to relate the
values to their power supplies or the order in which the supplies need
to be configured and that is left for the implementation specific
binding.
minItems: 1
maxItems: 8 # Should be enough regulators
opp-microwatt:
description: |
The power for the OPP in micro-Watts.
Entries for multiple regulators shall be provided in the same field
separated by angular brackets <>. If current values aren't required
for a regulator, then it shall be filled with 0. If power values
aren't required for any of the regulators, then this field is not
required. The OPP binding doesn't provide any provisions to relate the
values to their power supplies or the order in which the supplies need
to be configured and that is left for the implementation specific
binding.
minItems: 1
maxItems: 8 # Should be enough regulators
opp-level:
description:
A value representing the performance level of the device.
$ref: /schemas/types.yaml#/definitions/uint32
opp-peak-kBps:
description:
Peak bandwidth in kilobytes per second, expressed as an array of
32-bit big-endian integers. Each element of the array represents the
peak bandwidth value of each interconnect path. The number of elements
should match the number of interconnect paths.
minItems: 1
maxItems: 32 # Should be enough
opp-avg-kBps:
description:
Average bandwidth in kilobytes per second, expressed as an array
of 32-bit big-endian integers. Each element of the array represents the
average bandwidth value of each interconnect path. The number of elements
should match the number of interconnect paths. This property is only
meaningful in OPP tables where opp-peak-kBps is present.
minItems: 1
maxItems: 32 # Should be enough
clock-latency-ns:
description:
Specifies the maximum possible transition latency (in nanoseconds) for
switching to this OPP from any other OPP.
turbo-mode:
description:
Marks the OPP to be used only for turbo modes. Turbo mode is available
on some platforms, where the device can run over its operating
frequency for a short duration of time limited by the device's power,
current and thermal limits.
type: boolean
opp-suspend:
description:
Marks the OPP to be used during device suspend. If multiple OPPs in
the table have this, the OPP with highest opp-hz will be used.
type: boolean
opp-supported-hw:
description: |
This property allows a platform to enable only a subset of the OPPs
from the larger set present in the OPP table, based on the current
version of the hardware (already known to the operating system).
Each block present in the array of blocks in this property, represents
a sub-group of hardware versions supported by the OPP. i.e. <sub-group
A>, <sub-group B>, etc. The OPP will be enabled if _any_ of these
sub-groups match the hardware's version.
Each sub-group is a platform defined array representing the hierarchy
of hardware versions supported by the platform. For a platform with
three hierarchical levels of version (X.Y.Z), this field shall look
like
opp-supported-hw = <X1 Y1 Z1>, <X2 Y2 Z2>, <X3 Y3 Z3>.
Each level (eg. X1) in version hierarchy is represented by a 32 bit
value, one bit per version and so there can be maximum 32 versions per
level. Logical AND (&) operation is performed for each level with the
hardware's level version and a non-zero output for _all_ the levels in
a sub-group means the OPP is supported by hardware. A value of
0xFFFFFFFF for each level in the sub-group will enable the OPP for all
versions for the hardware.
$ref: /schemas/types.yaml#/definitions/uint32-matrix
maxItems: 32
items:
minItems: 1
maxItems: 4
required-opps:
description:
This contains phandle to an OPP node in another device's OPP table. It
may contain an array of phandles, where each phandle points to an OPP
of a different device. It should not contain multiple phandles to the
OPP nodes in the same OPP table. This specifies the minimum required
OPP of the device(s), whose OPP's phandle is present in this property,
for the functioning of the current device at the current OPP (where
this property is present).
$ref: /schemas/types.yaml#/definitions/phandle-array
items:
maxItems: 1
patternProperties:
'^opp-microvolt-':
description:
Named opp-microvolt property. This is exactly similar to the above
opp-microvolt property, but allows multiple voltage ranges to be
provided for the same OPP. At runtime, the platform can pick a <name>
and matching opp-microvolt-<name> property will be enabled for all
OPPs. If the platform doesn't pick a specific <name> or the <name>
doesn't match with any opp-microvolt-<name> properties, then
opp-microvolt property shall be used, if present.
$ref: /schemas/types.yaml#/definitions/uint32-matrix
minItems: 1
maxItems: 8 # Should be enough regulators
items:
minItems: 1
maxItems: 3
'^opp-microamp-':
description:
Named opp-microamp property. Similar to opp-microvolt-<name> property,
but for microamp instead.
$ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 1
maxItems: 8 # Should be enough regulators
'^opp-microwatt':
description:
Named opp-microwatt property. Similar to opp-microamp property,
but for microwatt instead.
$ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 1
maxItems: 8 # Should be enough regulators
dependencies:
opp-avg-kBps: [ opp-peak-kBps ]
required:
- compatible
additionalProperties: true
...

View File

@@ -0,0 +1,269 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/opp-v2-kryo-cpu.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Qualcomm Technologies, Inc. NVMEM OPP bindings
maintainers:
- Ilia Lin <ilia.lin@kernel.org>
allOf:
- $ref: opp-v2-base.yaml#
description: |
In certain Qualcomm Technologies, Inc. SoCs like APQ8096 and MSM8996,
the CPU frequencies subset and voltage value of each OPP varies based on
the silicon variant in use.
Qualcomm Technologies, Inc. Process Voltage Scaling Tables
defines the voltage and frequency value based on the speedbin blown in
the efuse combination.
The qcom-cpufreq-nvmem driver reads the efuse value from the SoC to provide
the OPP framework with required information (existing HW bitmap).
This is used to determine the voltage and frequency value for each OPP of
operating-points-v2 table when it is parsed by the OPP framework.
properties:
compatible:
const: operating-points-v2-kryo-cpu
nvmem-cells:
description: |
A phandle pointing to a nvmem-cells node representing the
efuse registers that has information about the
speedbin that is used to select the right frequency/voltage
value pair.
opp-shared: true
patternProperties:
'^opp-?[0-9]+$':
type: object
additionalProperties: false
properties:
opp-hz: true
opp-microvolt: true
opp-supported-hw:
description: |
A single 32 bit bitmap value, representing compatible HW.
Bitmap:
0: MSM8996, speedbin 0
1: MSM8996, speedbin 1
2: MSM8996, speedbin 2
3-31: unused
maximum: 0x7
clock-latency-ns: true
required-opps: true
required:
- opp-hz
required:
- compatible
if:
required:
- nvmem-cells
then:
patternProperties:
'^opp-?[0-9]+$':
required:
- opp-supported-hw
additionalProperties: false
examples:
- |
/ {
model = "Qualcomm Technologies, Inc. DB820c";
compatible = "arrow,apq8096-db820c", "qcom,apq8096-sbc", "qcom,apq8096";
#address-cells = <2>;
#size-cells = <2>;
cpus {
#address-cells = <2>;
#size-cells = <0>;
CPU0: cpu@0 {
device_type = "cpu";
compatible = "qcom,kryo";
reg = <0x0 0x0>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP_0>;
capacity-dmips-mhz = <1024>;
clocks = <&kryocc 0>;
operating-points-v2 = <&cluster0_opp>;
power-domains = <&cpr>;
power-domain-names = "cpr";
#cooling-cells = <2>;
next-level-cache = <&L2_0>;
L2_0: l2-cache {
compatible = "cache";
cache-level = <2>;
};
};
CPU1: cpu@1 {
device_type = "cpu";
compatible = "qcom,kryo";
reg = <0x0 0x1>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP_0>;
capacity-dmips-mhz = <1024>;
clocks = <&kryocc 0>;
operating-points-v2 = <&cluster0_opp>;
power-domains = <&cpr>;
power-domain-names = "cpr";
#cooling-cells = <2>;
next-level-cache = <&L2_0>;
};
CPU2: cpu@100 {
device_type = "cpu";
compatible = "qcom,kryo";
reg = <0x0 0x100>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP_0>;
capacity-dmips-mhz = <1024>;
clocks = <&kryocc 1>;
operating-points-v2 = <&cluster1_opp>;
power-domains = <&cpr>;
power-domain-names = "cpr";
#cooling-cells = <2>;
next-level-cache = <&L2_1>;
L2_1: l2-cache {
compatible = "cache";
cache-level = <2>;
};
};
CPU3: cpu@101 {
device_type = "cpu";
compatible = "qcom,kryo";
reg = <0x0 0x101>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP_0>;
capacity-dmips-mhz = <1024>;
clocks = <&kryocc 1>;
operating-points-v2 = <&cluster1_opp>;
power-domains = <&cpr>;
power-domain-names = "cpr";
#cooling-cells = <2>;
next-level-cache = <&L2_1>;
};
cpu-map {
cluster0 {
core0 {
cpu = <&CPU0>;
};
core1 {
cpu = <&CPU1>;
};
};
cluster1 {
core0 {
cpu = <&CPU2>;
};
core1 {
cpu = <&CPU3>;
};
};
};
};
cluster0_opp: opp-table-0 {
compatible = "operating-points-v2-kryo-cpu";
nvmem-cells = <&speedbin_efuse>;
opp-shared;
opp-307200000 {
opp-hz = /bits/ 64 <307200000>;
opp-microvolt = <905000 905000 1140000>;
opp-supported-hw = <0x7>;
clock-latency-ns = <200000>;
required-opps = <&cpr_opp1>;
};
opp-1401600000 {
opp-hz = /bits/ 64 <1401600000>;
opp-microvolt = <1140000 905000 1140000>;
opp-supported-hw = <0x5>;
clock-latency-ns = <200000>;
required-opps = <&cpr_opp2>;
};
opp-1593600000 {
opp-hz = /bits/ 64 <1593600000>;
opp-microvolt = <1140000 905000 1140000>;
opp-supported-hw = <0x1>;
clock-latency-ns = <200000>;
required-opps = <&cpr_opp3>;
};
};
cluster1_opp: opp-table-1 {
compatible = "operating-points-v2-kryo-cpu";
nvmem-cells = <&speedbin_efuse>;
opp-shared;
opp-307200000 {
opp-hz = /bits/ 64 <307200000>;
opp-microvolt = <905000 905000 1140000>;
opp-supported-hw = <0x7>;
clock-latency-ns = <200000>;
required-opps = <&cpr_opp1>;
};
opp-1804800000 {
opp-hz = /bits/ 64 <1804800000>;
opp-microvolt = <1140000 905000 1140000>;
opp-supported-hw = <0x6>;
clock-latency-ns = <200000>;
required-opps = <&cpr_opp4>;
};
opp-1900800000 {
opp-hz = /bits/ 64 <1900800000>;
opp-microvolt = <1140000 905000 1140000>;
opp-supported-hw = <0x4>;
clock-latency-ns = <200000>;
required-opps = <&cpr_opp5>;
};
opp-2150400000 {
opp-hz = /bits/ 64 <2150400000>;
opp-microvolt = <1140000 905000 1140000>;
opp-supported-hw = <0x1>;
clock-latency-ns = <200000>;
required-opps = <&cpr_opp6>;
};
};
smem {
compatible = "qcom,smem";
memory-region = <&smem_mem>;
hwlocks = <&tcsr_mutex 3>;
};
soc {
#address-cells = <1>;
#size-cells = <1>;
qfprom: qfprom@74000 {
compatible = "qcom,msm8996-qfprom", "qcom,qfprom";
reg = <0x00074000 0x8ff>;
#address-cells = <1>;
#size-cells = <1>;
speedbin_efuse: speedbin@133 {
reg = <0x133 0x1>;
bits = <5 3>;
};
};
};
};

View File

@@ -0,0 +1,61 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/opp-v2-qcom-level.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Qualcomm OPP bindings to describe OPP nodes.
maintainers:
- Niklas Cassel <nks@flawful.org>
allOf:
- $ref: opp-v2-base.yaml#
properties:
compatible:
const: operating-points-v2-qcom-level
patternProperties:
'^opp-?[0-9]+$':
type: object
additionalProperties: false
properties:
opp-level: true
qcom,opp-fuse-level:
description: |
A positive value representing the fuse corner/level associated with
this OPP node. Sometimes several corners/levels shares a certain fuse
corner/level. A fuse corner/level contains e.g. ref uV, min uV,
and max uV.
$ref: /schemas/types.yaml#/definitions/uint32
required:
- opp-level
- qcom,opp-fuse-level
required:
- compatible
additionalProperties: false
examples:
- |
cpr_opp_table: opp-table-cpr {
compatible = "operating-points-v2-qcom-level";
cpr_opp1: opp1 {
opp-level = <1>;
qcom,opp-fuse-level = <1>;
};
cpr_opp2: opp2 {
opp-level = <2>;
qcom,opp-fuse-level = <2>;
};
cpr_opp3: opp3 {
opp-level = <3>;
qcom,opp-fuse-level = <3>;
};
};

475
bindings/opp/opp-v2.yaml Normal file
View File

@@ -0,0 +1,475 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/opp/opp-v2.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Generic OPP (Operating Performance Points) Bindings
maintainers:
- Viresh Kumar <viresh.kumar@linaro.org>
allOf:
- $ref: opp-v2-base.yaml#
properties:
compatible:
const: operating-points-v2
unevaluatedProperties: false
examples:
- |
/*
* Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states
* together.
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu0_opp_table0>;
};
cpu@1 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu0_opp_table0>;
};
};
cpu0_opp_table0: opp-table {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
clock-latency-ns = <290000>;
turbo-mode;
};
};
- |
/*
* Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states
* independently.
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "qcom,krait";
device_type = "cpu";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@1 {
compatible = "qcom,krait";
device_type = "cpu";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@2 {
compatible = "qcom,krait";
device_type = "cpu";
reg = <2>;
next-level-cache = <&L2>;
clocks = <&clk_controller 2>;
clock-names = "cpu";
cpu-supply = <&cpu_supply2>;
operating-points-v2 = <&cpu_opp_table>;
};
cpu@3 {
compatible = "qcom,krait";
device_type = "cpu";
reg = <3>;
next-level-cache = <&L2>;
clocks = <&clk_controller 3>;
clock-names = "cpu";
cpu-supply = <&cpu_supply3>;
operating-points-v2 = <&cpu_opp_table>;
};
};
cpu_opp_table: opp-table {
compatible = "operating-points-v2";
/*
* Missing opp-shared property means CPUs switch DVFS states
* independently.
*/
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
opp-microamp = <90000>;
lock-latency-ns = <290000>;
turbo-mode;
};
};
- |
/*
* Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch
* DVFS state together.
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <0>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cluster0_opp>;
};
cpu@1 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <1>;
next-level-cache = <&L2>;
clocks = <&clk_controller 0>;
clock-names = "cpu";
cpu-supply = <&cpu_supply0>;
operating-points-v2 = <&cluster0_opp>;
};
cpu@100 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <100>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cluster1_opp>;
};
cpu@101 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <101>;
next-level-cache = <&L2>;
clocks = <&clk_controller 1>;
clock-names = "cpu";
cpu-supply = <&cpu_supply1>;
operating-points-v2 = <&cluster1_opp>;
};
};
cluster0_opp: opp-table-0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <975000 970000 985000>;
opp-microamp = <70000>;
clock-latency-ns = <300000>;
opp-suspend;
};
opp-1100000000 {
opp-hz = /bits/ 64 <1100000000>;
opp-microvolt = <1000000 980000 1010000>;
opp-microamp = <80000>;
clock-latency-ns = <310000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt = <1025000>;
opp-microamp = <90000>;
clock-latency-ns = <290000>;
turbo-mode;
};
};
cluster1_opp: opp-table-1 {
compatible = "operating-points-v2";
opp-shared;
opp-1300000000 {
opp-hz = /bits/ 64 <1300000000>;
opp-microvolt = <1050000 1045000 1055000>;
opp-microamp = <95000>;
clock-latency-ns = <400000>;
opp-suspend;
};
opp-1400000000 {
opp-hz = /bits/ 64 <1400000000>;
opp-microvolt = <1075000>;
opp-microamp = <100000>;
clock-latency-ns = <400000>;
};
opp-1500000000 {
opp-hz = /bits/ 64 <1500000000>;
opp-microvolt = <1100000 1010000 1110000>;
opp-microamp = <95000>;
clock-latency-ns = <400000>;
turbo-mode;
};
};
- |
/* Example 4: Handling multiple regulators */
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "foo,cpu-type";
device_type = "cpu";
reg = <0>;
vcc0-supply = <&cpu_supply0>;
vcc1-supply = <&cpu_supply1>;
vcc2-supply = <&cpu_supply2>;
operating-points-v2 = <&cpu0_opp_table4>;
};
};
cpu0_opp_table4: opp-table-0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <970000>, /* Supply 0 */
<960000>, /* Supply 1 */
<960000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<70000>, /* Supply 1 */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
/* OR */
opp-1000000001 {
opp-hz = /bits/ 64 <1000000001>;
opp-microvolt = <975000 970000 985000>, /* Supply 0 */
<965000 960000 975000>, /* Supply 1 */
<965000 960000 975000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<70000>, /* Supply 1 */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
/* OR */
opp-1000000002 {
opp-hz = /bits/ 64 <1000000002>;
opp-microvolt = <975000 970000 985000>, /* Supply 0 */
<965000 960000 975000>, /* Supply 1 */
<965000 960000 975000>; /* Supply 2 */
opp-microamp = <70000>, /* Supply 0 */
<0>, /* Supply 1 doesn't need this */
<70000>; /* Supply 2 */
clock-latency-ns = <300000>;
};
};
- |
/*
* Example 5: opp-supported-hw
* (example: three level hierarchy of versions: cuts, substrate and process)
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <0>;
cpu-supply = <&cpu_supply>;
operating-points-v2 = <&cpu0_opp_table_slow>;
};
};
cpu0_opp_table_slow: opp-table {
compatible = "operating-points-v2";
opp-shared;
opp-600000000 {
/*
* Supports all substrate and process versions for 0xF
* cuts, i.e. only first four cuts.
*/
opp-supported-hw = <0xF 0xFFFFFFFF 0xFFFFFFFF>;
opp-hz = /bits/ 64 <600000000>;
};
opp-800000000 {
/*
* Supports:
* - cuts: only one, 6th cut (represented by 6th bit).
* - substrate: supports 16 different substrate versions
* - process: supports 9 different process versions
*/
opp-supported-hw = <0x20 0xff0000ff 0x0000f4f0>;
opp-hz = /bits/ 64 <800000000>;
};
opp-900000000 {
/*
* Supports:
* - All cuts and substrate where process version is 0x2.
* - All cuts and process where substrate version is 0x2.
*/
opp-supported-hw = <0xFFFFFFFF 0xFFFFFFFF 0x02>,
<0xFFFFFFFF 0x01 0xFFFFFFFF>;
opp-hz = /bits/ 64 <900000000>;
};
};
- |
/*
* Example 6: opp-microvolt-<name>, opp-microamp-<name>:
* (example: device with two possible microvolt ranges: slow and fast)
*/
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <0>;
operating-points-v2 = <&cpu0_opp_table6>;
};
};
cpu0_opp_table6: opp-table-0 {
compatible = "operating-points-v2";
opp-shared;
opp-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt-slow = <915000 900000 925000>;
opp-microvolt-fast = <975000 970000 985000>;
opp-microamp-slow = <70000>;
opp-microamp-fast = <71000>;
};
opp-1200000000 {
opp-hz = /bits/ 64 <1200000000>;
opp-microvolt-slow = <915000 900000 925000>, /* Supply vcc0 */
<925000 910000 935000>; /* Supply vcc1 */
opp-microvolt-fast = <975000 970000 985000>, /* Supply vcc0 */
<965000 960000 975000>; /* Supply vcc1 */
opp-microamp = <70000>; /* Will be used for both slow/fast */
};
};
- |
/*
* Example 7: Single cluster Quad-core ARM cortex A53, OPP points from firmware,
* distinct clock controls but two sets of clock/voltage/current lines.
*/
cpus {
#address-cells = <2>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a53";
device_type = "cpu";
reg = <0x0 0x100>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 0>;
operating-points-v2 = <&cpu_opp0_table>;
};
cpu@1 {
compatible = "arm,cortex-a53";
device_type = "cpu";
reg = <0x0 0x101>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 1>;
operating-points-v2 = <&cpu_opp0_table>;
};
cpu@2 {
compatible = "arm,cortex-a53";
device_type = "cpu";
reg = <0x0 0x102>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 2>;
operating-points-v2 = <&cpu_opp1_table>;
};
cpu@3 {
compatible = "arm,cortex-a53";
device_type = "cpu";
reg = <0x0 0x103>;
next-level-cache = <&A53_L2>;
clocks = <&dvfs_controller 3>;
operating-points-v2 = <&cpu_opp1_table>;
};
};
cpu_opp0_table: opp-table-0 {
compatible = "operating-points-v2";
opp-shared;
};
cpu_opp1_table: opp-table-1 {
compatible = "operating-points-v2";
opp-shared;
};
...

View File

@@ -0,0 +1,63 @@
Texas Instruments OMAP compatible OPP supply description
OMAP5, DRA7, and AM57 family of SoCs have Class0 AVS eFuse registers which
contain data that can be used to adjust voltages programmed for some of their
supplies for more efficient operation. This binding provides the information
needed to read these values and use them to program the main regulator during
an OPP transitions.
Also, some supplies may have an associated vbb-supply which is an Adaptive Body
Bias regulator which much be transitioned in a specific sequence with regards
to the vdd-supply and clk when making an OPP transition. By supplying two
regulators to the device that will undergo OPP transitions we can make use
of the multi regulator binding that is part of the OPP core described here [1]
to describe both regulators needed by the platform.
[1] Documentation/devicetree/bindings/opp/opp-v2.yaml
Required Properties for Device Node:
- vdd-supply: phandle to regulator controlling VDD supply
- vbb-supply: phandle to regulator controlling Body Bias supply
(Usually Adaptive Body Bias regulator)
Required Properties for opp-supply node:
- compatible: Should be one of:
"ti,omap-opp-supply" - basic OPP supply controlling VDD and VBB
"ti,omap5-opp-supply" - OMAP5+ optimized voltages in efuse(class0)VDD
along with VBB
"ti,omap5-core-opp-supply" - OMAP5+ optimized voltages in efuse(class0) VDD
but no VBB.
- reg: Address and length of the efuse register set for the device (mandatory
only for "ti,omap5-opp-supply")
- ti,efuse-settings: An array of u32 tuple items providing information about
optimized efuse configuration. Each item consists of the following:
volt: voltage in uV - reference voltage (OPP voltage)
efuse_offseet: efuse offset from reg where the optimized voltage is stored.
- ti,absolute-max-voltage-uv: absolute maximum voltage for the OPP supply.
Example:
/* Device Node (CPU) */
cpus {
cpu0: cpu@0 {
device_type = "cpu";
...
vdd-supply = <&vcc>;
vbb-supply = <&abb_mpu>;
};
};
/* OMAP OPP Supply with Class0 registers */
opp_supply_mpu: opp_supply@4a003b20 {
compatible = "ti,omap5-opp-supply";
reg = <0x4a003b20 0x8>;
ti,efuse-settings = <
/* uV offset */
1060000 0x0
1160000 0x4
1210000 0x8
>;
ti,absolute-max-voltage-uv = <1500000>;
};