dt-bindings: Add devicetree bindings

Add snapshot of device tree bindings from keystone common kernel, branch
"android-mainline-keystone-qcom-release" at c4c12103f9c0 ("Snap for 9228065
from e32903b9a63bb558df8b803b076619c53c16baad to
android-mainline-keystone-qcom-release").

Change-Id: I7682079615cbd9f29340a5c1f2a1d84ec441a1f1
Signed-off-by: Melody Olvera <quic_molvera@quicinc.com>
This commit is contained in:
Melody Olvera
2023-04-03 14:38:11 -07:00
parent c334acf377
commit 6f18ce8026
4878 changed files with 424312 additions and 0 deletions

View File

@@ -0,0 +1,21 @@
NVIDIA compliant embedded controller
Required properties:
- compatible : should be "nvidia,nvec".
- reg : the iomem of the i2c slave controller
- interrupts : the interrupt line of the i2c slave controller
- clock-frequency : the frequency of the i2c bus
- gpios : the gpio used for ec request
- slave-addr: the i2c address of the slave controller
- clocks : Must contain an entry for each entry in clock-names.
See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
Tegra20/Tegra30:
- div-clk
- fast-clk
Tegra114:
- div-clk
- resets : Must contain an entry for each entry in reset-names.
See ../reset/reset.txt for details.
- reset-names : Must include the following entries:
- i2c

View File

@@ -0,0 +1,51 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/arm/tegra/nvidia,tegra-ccplex-cluster.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: NVIDIA Tegra CPU COMPLEX CLUSTER area device tree bindings
maintainers:
- Sumit Gupta <sumitg@nvidia.com>
- Mikko Perttunen <mperttunen@nvidia.com>
- Jon Hunter <jonathanh@nvidia.com>
- Thierry Reding <thierry.reding@gmail.com>
description: |+
The Tegra CPU COMPLEX CLUSTER area contains memory-mapped
registers that initiate CPU frequency/voltage transitions.
properties:
$nodename:
pattern: "ccplex@([0-9a-f]+)$"
compatible:
enum:
- nvidia,tegra186-ccplex-cluster
- nvidia,tegra234-ccplex-cluster
reg:
maxItems: 1
nvidia,bpmp:
$ref: '/schemas/types.yaml#/definitions/phandle'
description: |
Specifies the BPMP node that needs to be queried to get
operating point data for all CPUs.
additionalProperties: false
required:
- compatible
- reg
- nvidia,bpmp
examples:
- |
ccplex@e000000 {
compatible = "nvidia,tegra234-ccplex-cluster";
reg = <0x0e000000 0x5ffff>;
nvidia,bpmp = <&bpmp>;
status = "okay";
};

View File

@@ -0,0 +1,198 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/tegra/nvidia,tegra186-pmc.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: NVIDIA Tegra Power Management Controller (PMC)
maintainers:
- Thierry Reding <thierry.reding@gmail.com>
- Jon Hunter <jonathanh@nvidia.com>
properties:
compatible:
enum:
- nvidia,tegra186-pmc
- nvidia,tegra194-pmc
- nvidia,tegra234-pmc
reg:
minItems: 4
maxItems: 5
reg-names:
minItems: 4
items:
- const: pmc
- const: wake
- const: aotag
- const: scratch
- const: misc
interrupt-controller: true
"#interrupt-cells":
description: Specifies the number of cells needed to encode an
interrupt source. The value must be 2.
const: 2
nvidia,invert-interrupt:
description: If present, inverts the PMU interrupt signal.
$ref: /schemas/types.yaml#/definitions/flag
if:
properties:
compatible:
contains:
const: nvidia,tegra186-pmc
then:
properties:
reg:
maxItems: 4
reg-names:
maxItems: 4
else:
properties:
reg:
minItems: 5
reg-names:
minItems: 5
patternProperties:
"^[a-z0-9]+-[a-z0-9]+$":
if:
type: object
then:
description: |
These are pad configuration nodes. On Tegra SoCs a pad is a set of
pins which are configured as a group. The pin grouping is a fixed
attribute of the hardware. The PMC can be used to set pad power
state and signaling voltage. A pad can be either in active or
power down mode. The support for power state and signaling voltage
configuration varies depending on the pad in question. 3.3 V and
1.8 V signaling voltages are supported on pins where software
controllable signaling voltage switching is available.
Pad configurations are described with pin configuration nodes
which are placed under the pmc node and they are referred to by
the pinctrl client properties. For more information see
Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
The following pads are present on Tegra186:
csia, csib, dsi, mipi-bias, pex-clk-bias, pex-clk3, pex-clk2,
pex-clk1, usb0, usb1, usb2, usb-bias, uart, audio, hsic, dbg,
hdmi-dp0, hdmi-dp1, pex-cntrl, sdmmc2-hv, sdmmc4, cam, dsib,
dsic, dsid, csic, csid, csie, dsif, spi, ufs, dmic-hv, edp,
sdmmc1-hv, sdmmc3-hv, conn, audio-hv, ao-hv
The following pads are present on Tegra194:
csia, csib, mipi-bias, pex-clk-bias, pex-clk3, pex-clk2,
pex-clk1, eqos, pex-clk-2-bias, pex-clk-2, dap3, dap5, uart,
pwr-ctl, soc-gpio53, audio, gp-pwm2, gp-pwm3, soc-gpio12,
soc-gpio13, soc-gpio10, uart4, uart5, dbg, hdmi-dp3, hdmi-dp2,
hdmi-dp0, hdmi-dp1, pex-cntrl, pex-ctl2, pex-l0-rst,
pex-l1-rst, sdmmc4, pex-l5-rst, cam, csic, csid, csie, csif,
spi, ufs, csig, csih, edp, sdmmc1-hv, sdmmc3-hv, conn,
audio-hv, ao-hv
properties:
pins:
$ref: /schemas/types.yaml#/definitions/string
description: Must contain the name of the pad(s) to be
configured.
low-power-enable:
description: Configure the pad into power down mode.
$ref: /schemas/types.yaml#/definitions/flag
low-power-disable:
description: Configure the pad into active mode.
$ref: /schemas/types.yaml#/definitions/flag
power-source:
$ref: /schemas/types.yaml#/definitions/uint32
description: |
Must contain either TEGRA_IO_PAD_VOLTAGE_1V8 or
TEGRA_IO_PAD_VOLTAGE_3V3 to select between signalling
voltages.
The values are defined in
include/dt-bindings/pinctrl/pinctrl-tegra-io-pad.h
The power state can be configured on all of the above pads
except for ao-hv. Following pads have software configurable
signaling voltages: sdmmc2-hv, dmic-hv, sdmmc1-hv, sdmmc3-hv,
audio-hv, ao-hv.
phandle: true
required:
- pins
additionalProperties: false
required:
- compatible
- reg
- reg-names
additionalProperties: false
dependencies:
interrupt-controller: ['#interrupt-cells']
"#interrupt-cells":
required:
- interrupt-controller
examples:
- |
#include <dt-bindings/clock/tegra186-clock.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/pinctrl/pinctrl-tegra-io-pad.h>
#include <dt-bindings/memory/tegra186-mc.h>
#include <dt-bindings/reset/tegra186-reset.h>
pmc@c3600000 {
compatible = "nvidia,tegra186-pmc";
reg = <0x0c360000 0x10000>,
<0x0c370000 0x10000>,
<0x0c380000 0x10000>,
<0x0c390000 0x10000>;
reg-names = "pmc", "wake", "aotag", "scratch";
nvidia,invert-interrupt;
sdmmc1_3v3: sdmmc1-3v3 {
pins = "sdmmc1-hv";
power-source = <TEGRA_IO_PAD_VOLTAGE_3V3>;
};
sdmmc1_1v8: sdmmc1-1v8 {
pins = "sdmmc1-hv";
power-source = <TEGRA_IO_PAD_VOLTAGE_1V8>;
};
};
sdmmc1: mmc@3400000 {
compatible = "nvidia,tegra186-sdhci";
reg = <0x03400000 0x10000>;
interrupts = <GIC_SPI 62 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&bpmp TEGRA186_CLK_SDMMC1>,
<&bpmp TEGRA186_CLK_SDMMC_LEGACY_TM>;
clock-names = "sdhci", "tmclk";
resets = <&bpmp TEGRA186_RESET_SDMMC1>;
reset-names = "sdhci";
interconnects = <&mc TEGRA186_MEMORY_CLIENT_SDMMCRA &emc>,
<&mc TEGRA186_MEMORY_CLIENT_SDMMCWA &emc>;
interconnect-names = "dma-mem", "write";
iommus = <&smmu TEGRA186_SID_SDMMC1>;
pinctrl-names = "sdmmc-3v3", "sdmmc-1v8";
pinctrl-0 = <&sdmmc1_3v3>;
pinctrl-1 = <&sdmmc1_1v8>;
};

View File

@@ -0,0 +1,40 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/arm/tegra/nvidia,tegra194-axi2apb.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: NVIDIA Tegra194 AXI2APB bridge
maintainers:
- Sumit Gupta <sumitg@nvidia.com>
properties:
$nodename:
pattern: "^axi2apb@([0-9a-f]+)$"
compatible:
enum:
- nvidia,tegra194-axi2apb
reg:
maxItems: 6
description: Physical base address and length of registers for all bridges
additionalProperties: false
required:
- compatible
- reg
examples:
- |
axi2apb: axi2apb@2390000 {
compatible = "nvidia,tegra194-axi2apb";
reg = <0x02390000 0x1000>,
<0x023a0000 0x1000>,
<0x023b0000 0x1000>,
<0x023c0000 0x1000>,
<0x023d0000 0x1000>,
<0x023e0000 0x1000>;
};

View File

@@ -0,0 +1,97 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/arm/tegra/nvidia,tegra194-cbb.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: NVIDIA Tegra194 CBB 1.0 bindings
maintainers:
- Sumit Gupta <sumitg@nvidia.com>
description: |+
The Control Backbone (CBB) is comprised of the physical path from an
initiator to a target's register configuration space. CBB 1.0 has
multiple hierarchical sub-NOCs (Network-on-Chip) and connects various
initiators and targets using different bridges like AXIP2P, AXI2APB.
This driver handles errors due to illegal register accesses reported
by the NOCs inside the CBB. NOCs reporting errors are cluster NOCs
"AON-NOC, SCE-NOC, RCE-NOC, BPMP-NOC, CV-NOC" and "CBB Central NOC"
which is the main NOC.
By default, the access issuing initiator is informed about the error
using SError or Data Abort exception unless the ERD (Error Response
Disable) is enabled/set for that initiator. If the ERD is enabled, then
SError or Data Abort is masked and the error is reported with interrupt.
- For CCPLEX (CPU Complex) initiator, the driver sets ERD bit. So, the
errors due to illegal accesses from CCPLEX are reported by interrupts.
If ERD is not set, then error is reported by SError.
- For other initiators, the ERD is disabled. So, the access issuing
initiator is informed about the illegal access by Data Abort exception.
In addition, an interrupt is also generated to CCPLEX. These initiators
include all engines using Cortex-R5 (which is ARMv7 CPU cluster) and
engines like TSEC (Security co-processor), NVDEC (NVIDIA Video Decoder
engine) etc which can initiate transactions.
The driver prints relevant debug information like Error Code, Error
Description, Master, Address, AXI ID, Cache, Protection, Security Group
etc on receiving error notification.
properties:
$nodename:
pattern: "^[a-z]+-noc@[0-9a-f]+$"
compatible:
enum:
- nvidia,tegra194-cbb-noc
- nvidia,tegra194-aon-noc
- nvidia,tegra194-bpmp-noc
- nvidia,tegra194-rce-noc
- nvidia,tegra194-sce-noc
reg:
maxItems: 1
interrupts:
description:
CCPLEX receives secure or nonsecure interrupt depending on error type.
A secure interrupt is received for SEC(firewall) & SLV errors and a
non-secure interrupt is received for TMO & DEC errors.
items:
- description: non-secure interrupt
- description: secure interrupt
nvidia,axi2apb:
$ref: '/schemas/types.yaml#/definitions/phandle'
description:
Specifies the node having all axi2apb bridges which need to be checked
for any error logged in their status register.
nvidia,apbmisc:
$ref: '/schemas/types.yaml#/definitions/phandle'
description:
Specifies the apbmisc node which need to be used for reading the ERD
register.
additionalProperties: false
required:
- compatible
- reg
- interrupts
- nvidia,apbmisc
examples:
- |
#include <dt-bindings/interrupt-controller/arm-gic.h>
cbb-noc@2300000 {
compatible = "nvidia,tegra194-cbb-noc";
reg = <0x02300000 0x1000>;
interrupts = <GIC_SPI 230 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 231 IRQ_TYPE_LEVEL_HIGH>;
nvidia,axi2apb = <&axi2apb>;
nvidia,apbmisc = <&apbmisc>;
};

View File

@@ -0,0 +1,17 @@
NVIDIA Tegra AHB
Required properties:
- compatible : For Tegra20, must contain "nvidia,tegra20-ahb". For
Tegra30, must contain "nvidia,tegra30-ahb". Otherwise, must contain
'"nvidia,<chip>-ahb", "nvidia,tegra30-ahb"' where <chip> is tegra124,
tegra132, or tegra210.
- reg : Should contain 1 register ranges(address and length). For
Tegra20, Tegra30, and Tegra114 chips, the value must be <0x6000c004
0x10c>. For Tegra124, Tegra132 and Tegra210 chips, the value should
be be <0x6000c000 0x150>.
Example (for a Tegra20 chip):
ahb: ahb@6000c004 {
compatible = "nvidia,tegra20-ahb";
reg = <0x6000c004 0x10c>; /* AHB Arbitration + Gizmo Controller */
};

View File

@@ -0,0 +1,18 @@
NVIDIA Tegra Flow Controller
Required properties:
- compatible: Should contain one of the following:
- "nvidia,tegra20-flowctrl": for Tegra20
- "nvidia,tegra30-flowctrl": for Tegra30
- "nvidia,tegra114-flowctrl": for Tegra114
- "nvidia,tegra124-flowctrl": for Tegra124
- "nvidia,tegra132-flowctrl", "nvidia,tegra124-flowctrl": for Tegra132
- "nvidia,tegra210-flowctrl": for Tegra210
- reg: Should contain one register range (address and length)
Example:
flow-controller@60007000 {
compatible = "nvidia,tegra20-flowctrl";
reg = <0x60007000 0x1000>;
};

View File

@@ -0,0 +1,389 @@
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/tegra/nvidia,tegra20-pmc.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Tegra Power Management Controller (PMC)
maintainers:
- Thierry Reding <thierry.reding@gmail.com>
- Jonathan Hunter <jonathanh@nvidia.com>
properties:
compatible:
enum:
- nvidia,tegra20-pmc
- nvidia,tegra30-pmc
- nvidia,tegra114-pmc
- nvidia,tegra124-pmc
- nvidia,tegra210-pmc
reg:
maxItems: 1
description:
Offset and length of the register set for the device.
clock-names:
items:
- const: pclk
- const: clk32k_in
description:
Must includes entries pclk and clk32k_in.
pclk is the Tegra clock of that name and clk32k_in is 32KHz clock
input to Tegra.
clocks:
maxItems: 2
description:
Must contain an entry for each entry in clock-names.
See ../clocks/clocks-bindings.txt for details.
'#clock-cells':
const: 1
description:
Tegra PMC has clk_out_1, clk_out_2, and clk_out_3.
PMC also has blink control which allows 32Khz clock output to
Tegra blink pad.
Consumer of PMC clock should specify the desired clock by having
the clock ID in its "clocks" phandle cell with pmc clock provider.
See include/dt-bindings/soc/tegra-pmc.h for the list of Tegra PMC
clock IDs.
'#interrupt-cells':
const: 2
description:
Specifies number of cells needed to encode an interrupt source.
The value must be 2.
interrupt-controller: true
nvidia,invert-interrupt:
$ref: /schemas/types.yaml#/definitions/flag
description: Inverts the PMU interrupt signal.
The PMU is an external Power Management Unit, whose interrupt output
signal is fed into the PMC. This signal is optionally inverted, and
then fed into the ARM GIC. The PMC is not involved in the detection
or handling of this interrupt signal, merely its inversion.
nvidia,core-power-req-active-high:
$ref: /schemas/types.yaml#/definitions/flag
description: Core power request active-high.
nvidia,sys-clock-req-active-high:
$ref: /schemas/types.yaml#/definitions/flag
description: System clock request active-high.
nvidia,combined-power-req:
$ref: /schemas/types.yaml#/definitions/flag
description: combined power request for CPU and Core.
nvidia,cpu-pwr-good-en:
$ref: /schemas/types.yaml#/definitions/flag
description:
CPU power good signal from external PMIC to PMC is enabled.
nvidia,suspend-mode:
$ref: /schemas/types.yaml#/definitions/uint32
enum: [0, 1, 2]
description:
The suspend mode that the platform should use.
Mode 0 is for LP0, CPU + Core voltage off and DRAM in self-refresh
Mode 1 is for LP1, CPU voltage off and DRAM in self-refresh
Mode 2 is for LP2, CPU voltage off
nvidia,cpu-pwr-good-time:
$ref: /schemas/types.yaml#/definitions/uint32
description: CPU power good time in uSec.
nvidia,cpu-pwr-off-time:
$ref: /schemas/types.yaml#/definitions/uint32
description: CPU power off time in uSec.
nvidia,core-pwr-good-time:
$ref: /schemas/types.yaml#/definitions/uint32-array
description:
<Oscillator-stable-time Power-stable-time>
Core power good time in uSec.
nvidia,core-pwr-off-time:
$ref: /schemas/types.yaml#/definitions/uint32
description: Core power off time in uSec.
nvidia,lp0-vec:
$ref: /schemas/types.yaml#/definitions/uint32-array
description:
<start length> Starting address and length of LP0 vector.
The LP0 vector contains the warm boot code that is executed
by AVP when resuming from the LP0 state.
The AVP (Audio-Video Processor) is an ARM7 processor and
always being the first boot processor when chip is power on
or resume from deep sleep mode. When the system is resumed
from the deep sleep mode, the warm boot code will restore
some PLLs, clocks and then brings up CPU0 for resuming the
system.
i2c-thermtrip:
type: object
description:
On Tegra30, Tegra114 and Tegra124 if i2c-thermtrip subnode exists,
hardware-triggered thermal reset will be enabled.
properties:
nvidia,i2c-controller-id:
$ref: /schemas/types.yaml#/definitions/uint32
description:
ID of I2C controller to send poweroff command to PMU.
Valid values are described in section 9.2.148
"APBDEV_PMC_SCRATCH53_0" of the Tegra K1 Technical Reference
Manual.
nvidia,bus-addr:
$ref: /schemas/types.yaml#/definitions/uint32
description: Bus address of the PMU on the I2C bus.
nvidia,reg-addr:
$ref: /schemas/types.yaml#/definitions/uint32
description: PMU I2C register address to issue poweroff command.
nvidia,reg-data:
$ref: /schemas/types.yaml#/definitions/uint32
description: Poweroff command to write to PMU.
nvidia,pinmux-id:
$ref: /schemas/types.yaml#/definitions/uint32
description:
Pinmux used by the hardware when issuing Poweroff command.
Defaults to 0. Valid values are described in section 12.5.2
"Pinmux Support" of the Tegra4 Technical Reference Manual.
required:
- nvidia,i2c-controller-id
- nvidia,bus-addr
- nvidia,reg-addr
- nvidia,reg-data
additionalProperties: false
powergates:
type: object
description: |
This node contains a hierarchy of power domain nodes, which should
match the powergates on the Tegra SoC. Each powergate node
represents a power-domain on the Tegra SoC that can be power-gated
by the Tegra PMC.
Hardware blocks belonging to a power domain should contain
"power-domains" property that is a phandle pointing to corresponding
powergate node.
The name of the powergate node should be one of the below. Note that
not every powergate is applicable to all Tegra devices and the following
list shows which powergates are applicable to which devices.
Please refer to Tegra TRM for mode details on the powergate nodes to
use for each power-gate block inside Tegra.
Name Description Devices Applicable
3d 3D Graphics Tegra20/114/124/210
3d0 3D Graphics 0 Tegra30
3d1 3D Graphics 1 Tegra30
aud Audio Tegra210
dfd Debug Tegra210
dis Display A Tegra114/124/210
disb Display B Tegra114/124/210
heg 2D Graphics Tegra30/114/124/210
iram Internal RAM Tegra124/210
mpe MPEG Encode All
nvdec NVIDIA Video Decode Engine Tegra210
nvjpg NVIDIA JPEG Engine Tegra210
pcie PCIE Tegra20/30/124/210
sata SATA Tegra30/124/210
sor Display interfaces Tegra124/210
ve2 Video Encode Engine 2 Tegra210
venc Video Encode Engine All
vdec Video Decode Engine Tegra20/30/114/124
vic Video Imaging Compositor Tegra124/210
xusba USB Partition A Tegra114/124/210
xusbb USB Partition B Tegra114/124/210
xusbc USB Partition C Tegra114/124/210
patternProperties:
"^[a-z0-9]+$":
type: object
properties:
clocks:
minItems: 1
maxItems: 8
description:
Must contain an entry for each clock required by the PMC
for controlling a power-gate.
See ../clocks/clock-bindings.txt document for more details.
resets:
minItems: 1
maxItems: 8
description:
Must contain an entry for each reset required by the PMC
for controlling a power-gate.
See ../reset/reset.txt for more details.
'#power-domain-cells':
const: 0
description: Must be 0.
required:
- clocks
- resets
- '#power-domain-cells'
additionalProperties: false
patternProperties:
"^[a-f0-9]+-[a-f0-9]+$":
type: object
description:
This is a Pad configuration node. On Tegra SOCs a pad is a set of
pins which are configured as a group. The pin grouping is a fixed
attribute of the hardware. The PMC can be used to set pad power state
and signaling voltage. A pad can be either in active or power down mode.
The support for power state and signaling voltage configuration varies
depending on the pad in question. 3.3V and 1.8V signaling voltages
are supported on pins where software controllable signaling voltage
switching is available.
The pad configuration state nodes are placed under the pmc node and they
are referred to by the pinctrl client properties. For more information
see Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt.
The pad name should be used as the value of the pins property in pin
configuration nodes.
The following pads are present on Tegra124 and Tegra132
audio, bb, cam, comp, csia, csb, cse, dsi, dsib, dsic, dsid, hdmi, hsic,
hv, lvds, mipi-bias, nand, pex-bias, pex-clk1, pex-clk2, pex-cntrl,
sdmmc1, sdmmc3, sdmmc4, sys_ddc, uart, usb0, usb1, usb2, usb_bias.
The following pads are present on Tegra210
audio, audio-hv, cam, csia, csib, csic, csid, csie, csif, dbg,
debug-nonao, dmic, dp, dsi, dsib, dsic, dsid, emmc, emmc2, gpio, hdmi,
hsic, lvds, mipi-bias, pex-bias, pex-clk1, pex-clk2, pex-cntrl, sdmmc1,
sdmmc3, spi, spi-hv, uart, usb0, usb1, usb2, usb3, usb-bias.
properties:
pins:
$ref: /schemas/types.yaml#/definitions/string
description: Must contain name of the pad(s) to be configured.
low-power-enable:
$ref: /schemas/types.yaml#/definitions/flag
description: Configure the pad into power down mode.
low-power-disable:
$ref: /schemas/types.yaml#/definitions/flag
description: Configure the pad into active mode.
power-source:
$ref: /schemas/types.yaml#/definitions/uint32
description:
Must contain either TEGRA_IO_PAD_VOLTAGE_1V8 or
TEGRA_IO_PAD_VOLTAGE_3V3 to select between signaling voltages.
The values are defined in
include/dt-bindings/pinctrl/pinctrl-tegra-io-pad.h.
Power state can be configured on all Tegra124 and Tegra132
pads. None of the Tegra124 or Tegra132 pads support signaling
voltage switching.
All of the listed Tegra210 pads except pex-cntrl support power
state configuration. Signaling voltage switching is supported
on below Tegra210 pads.
audio, audio-hv, cam, dbg, dmic, gpio, pex-cntrl, sdmmc1,
sdmmc3, spi, spi-hv, and uart.
required:
- pins
additionalProperties: false
core-domain:
type: object
description: |
The vast majority of hardware blocks of Tegra SoC belong to a
Core power domain, which has a dedicated voltage rail that powers
the blocks.
properties:
operating-points-v2:
description:
Should contain level, voltages and opp-supported-hw property.
The supported-hw is a bitfield indicating SoC speedo or process
ID mask.
"#power-domain-cells":
const: 0
required:
- operating-points-v2
- "#power-domain-cells"
additionalProperties: false
core-supply:
description:
Phandle to voltage regulator connected to the SoC Core power rail.
required:
- compatible
- reg
- clock-names
- clocks
- '#clock-cells'
additionalProperties: false
dependencies:
"nvidia,suspend-mode": ["nvidia,core-pwr-off-time", "nvidia,cpu-pwr-off-time"]
"nvidia,core-pwr-off-time": ["nvidia,core-pwr-good-time"]
"nvidia,cpu-pwr-off-time": ["nvidia,cpu-pwr-good-time"]
examples:
- |
#include <dt-bindings/clock/tegra210-car.h>
#include <dt-bindings/pinctrl/pinctrl-tegra-io-pad.h>
#include <dt-bindings/soc/tegra-pmc.h>
tegra_pmc: pmc@7000e400 {
compatible = "nvidia,tegra210-pmc";
reg = <0x7000e400 0x400>;
core-supply = <&regulator>;
clocks = <&tegra_car TEGRA210_CLK_PCLK>, <&clk32k_in>;
clock-names = "pclk", "clk32k_in";
#clock-cells = <1>;
nvidia,invert-interrupt;
nvidia,suspend-mode = <0>;
nvidia,cpu-pwr-good-time = <0>;
nvidia,cpu-pwr-off-time = <0>;
nvidia,core-pwr-good-time = <4587 3876>;
nvidia,core-pwr-off-time = <39065>;
nvidia,core-power-req-active-high;
nvidia,sys-clock-req-active-high;
pd_core: core-domain {
operating-points-v2 = <&core_opp_table>;
#power-domain-cells = <0>;
};
powergates {
pd_audio: aud {
clocks = <&tegra_car TEGRA210_CLK_APE>,
<&tegra_car TEGRA210_CLK_APB2APE>;
resets = <&tegra_car 198>;
power-domains = <&pd_core>;
#power-domain-cells = <0>;
};
pd_xusbss: xusba {
clocks = <&tegra_car TEGRA210_CLK_XUSB_SS>;
resets = <&tegra_car TEGRA210_CLK_XUSB_SS>;
power-domains = <&pd_core>;
#power-domain-cells = <0>;
};
};
};

View File

@@ -0,0 +1,74 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/arm/tegra/nvidia,tegra234-cbb.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: NVIDIA Tegra CBB 2.0 bindings
maintainers:
- Sumit Gupta <sumitg@nvidia.com>
description: |+
The Control Backbone (CBB) is comprised of the physical path from an
initiator to a target's register configuration space. CBB 2.0 consists
of multiple sub-blocks connected to each other to create a topology.
The Tegra234 SoC has different fabrics based on CBB 2.0 architecture
which include cluster fabrics BPMP, AON, PSC, SCE, RCE, DCE, FSI and
"CBB central fabric".
In CBB 2.0, each initiator which can issue transactions connects to a
Root Master Node (MN) before it connects to any other element of the
fabric. Each Root MN contains a Error Monitor (EM) which detects and
logs error. Interrupts from various EM blocks are collated by Error
Notifier (EN) which is per fabric and presents a single interrupt from
fabric to the SoC interrupt controller.
The driver handles errors from CBB due to illegal register accesses
and prints debug information about failed transaction on receiving
the interrupt from EN. Debug information includes Error Code, Error
Description, MasterID, Fabric, SlaveID, Address, Cache, Protection,
Security Group etc on receiving error notification.
If the Error Response Disable (ERD) is set/enabled for an initiator,
then SError or Data abort exception error response is masked and an
interrupt is used for reporting errors due to illegal accesses from
that initiator. The value returned on read failures is '0xFFFFFFFF'
for compatibility with PCIE.
properties:
$nodename:
pattern: "^[a-z]+-fabric@[0-9a-f]+$"
compatible:
enum:
- nvidia,tegra234-aon-fabric
- nvidia,tegra234-bpmp-fabric
- nvidia,tegra234-cbb-fabric
- nvidia,tegra234-dce-fabric
- nvidia,tegra234-rce-fabric
- nvidia,tegra234-sce-fabric
reg:
maxItems: 1
interrupts:
items:
- description: secure interrupt from error notifier
additionalProperties: false
required:
- compatible
- reg
- interrupts
examples:
- |
#include <dt-bindings/interrupt-controller/arm-gic.h>
cbb-fabric@1300000 {
compatible = "nvidia,tegra234-cbb-fabric";
reg = <0x13a00000 0x400000>;
interrupts = <GIC_SPI 231 IRQ_TYPE_LEVEL_HIGH>;
};